
June 9th 2022 — Quantstamp Verified

Nomad

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Bridge

Auditors Souhail Mssassi, Research Engineer

Andy Lin, Senior Auditing Engineer

Alejandro Padilla Gaeta, Research Engineer

Timeline 2022-04-12 through 2022-06-06

EVM London

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification Nomad Docs

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

monorepo 17f0557

zodiac-module-nomad d887024

zodiac-module-nomad 482c1e2

zodiac-module-nomad 93daaf9

Total Issues 40 (16 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 6 (6 Resolved)

Low Risk Issues 18 (7 Resolved)

Informational Risk Issues 9 (1 Resolved)

Undetermined Risk Issues 6 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/nomad-xyz/docs/commit/875ba66fe26e42cca44e18a42921016561279c27
https://github.com/nomad-xyz/monorepo
https://github.com/nomad-xyz/monorepo/commit/17f0557
https://github.com/gnosis/zodiac-module-nomad
https://github.com/gnosis/zodiac-module-nomad/commit/d8870245e3badffff9007481c98fdfc17e89b82c
https://github.com/gnosis/zodiac-module-nomad
https://github.com/gnosis/zodiac-module-nomad/commit/482c1e29b344fd5961fb850eb70a9fc5d1faee4a
https://github.com/gnosis/zodiac-module-nomad
https://github.com/gnosis/zodiac-module-nomad/commit/93daaf931378b79c53e3c494af9671c59e843ee1

Summary of Findings

:

Through reviewing the code, we found of various levels of severity: high-severity, medium-severity, low-severity, informational-security and undermined

issues. We recommend addressing all the issues before deploying the code.

:

The Nomad team has fixed the majority of the issues and the contracts are ready to be deployed, we also found a new issue the QSP-40.

Initial audit

40 potential issues 1 6 18 9 6

After the re-audit

ID Description Severity Status

QSP-1 Impossibility To Recover From A Failed State Medium Fixed

QSP-2 Messages Can Be Proven And Processed In The Replica Even On StateFailed High Fixed

QSP-3 Messages Can Be Delivered Out Of Order Medium Fixed

QSP-4 Long Queues Can Lead To Denial Of Service Medium Mitigated

QSP-5 Method Can Be Abused_dust Low Acknowledged

QSP-6 Watcher Availability Concern Medium Mitigated

QSP-7 Replay Attack In The improperUpdate Low Acknowledged

QSP-8 Missing Verification On The FEE_NUMERATOR Medium Fixed

QSP-9 Missing Validation On The optimisticSeconds Medium Fixed

QSP-10 Liquidity Provider Fee Can Be Bypassed Low Fixed

QSP-11 Front Running Can Make Liquidity Providers Lose Their Funds Low Fixed

QSP-12 BridgeToken Allows The Owner Of The Contract To Burn Tokens Even Without Their Approval Low Acknowledged

QSP-13 Will Not Complain If The Remote Router Is Not Present_sendToAllRemoteRouters Informational Acknowledged

QSP-14 Possible To Change DecimalsBridgeToken Low Acknowledged

QSP-15 Contracts Might Not Be Transferred To Rightful Owner Low Mitigated

QSP-16 Custom Tokens Could Be Malicious Low Acknowledged

QSP-17 Possible To Renounce Ownership Low Mitigated

QSP-18 Signature Replay Attack: Multiple Deployments Low Acknowledged

QSP-19 Proving With An Empty Leaf Low Acknowledged

QSP-20 Integer Overflow /Underflow Low Fixed

QSP-21 Tighten Validations Around Message Low Acknowledged

QSP-22 Abusing Underflow Low Mitigated

QSP-23 Missing Input Validation Low Acknowledged

QSP-24 Incompatibility With Deflationary Tokens Low Acknowledged

QSP-25 Approve Race Condition Low Acknowledged

QSP-26 Floating Pragma Low Fixed

QSP-27 Modifier Allows This Contract To Be The Caller Informational Acknowledged

QSP-28 BridgeRouter Must Be The Owner Of The TokenRegistry To Work Informational Mitigated

QSP-29 Signature Replay Attack: Hard Fork Informational Acknowledged

QSP-30 Mass Un-enrollment Informational Acknowledged

QSP-31 Susceptible To Signature Malleability Informational Acknowledged

QSP-32 Missing Events Informational Acknowledged

QSP-33 Trusted Actors Risk And External Agents Have Too Much Power Informational Acknowledged

QSP-34 Transactions Are Marked As Processed Even If They Fail Undetermined Fixed

QSP-35 Upgradeable Contracts Can Be Working With Older Versions Undetermined Acknowledged

QSP-36 No Enforcement On The Governance Messages To Be Delivered Undetermined Acknowledged

QSP-37 Possible To Run While Local Governance Router Is On RecoveryexecuteCallBatch Undetermined Acknowledged

QSP-38 Updater Stop Signing New Roots Undetermined Acknowledged

QSP-39 Diverge In The Updater During Updater Rotation Undetermined Acknowledged

QSP-40 Initializer Not Disabled On Implementation Contract Informational Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.2• Slither

Steps taken to run the tools:

1. Install the Slither tool: pip3 install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Impossibility To Recover From A Failed State

Severity: Medium Risk

FixedStatus:

, ,File(s) affected: Home.sol NomadBase.sol Replica.sol

Whenever fraud is detected in the or contracts, they will be moved to a state (via the or methods). However, once a

contract moves to that state, it's not possible to return it to . The only way out is to upgrade the contracts' code or deploy new instances.

Description: Home Replica Failed doubleUpdate improperUpdate
Active

Design a mechanism for governance or a privileged account to get the system back to state once fraud has been dealt with.Recommendation: Active

The Nomad team fixed the issue. Given this issue could also have been solved through a contract upgrade, we decided to move its severity to .Update: Medium

QSP-2 Messages Can Be Proven And Processed In The Replica Even On StateFailed

Severity: High Risk

FixedStatus:

https://github.com/crytic/slither

File(s) affected: Replica.sol

The , , and methods can be called even if the contract is on state. Therefore, if governance does not deal with the replica

immediately (replace replica in the corresponding or remove fraudulent roots via the method), fraudulent roots might have enough time to be

confirmed, thereby letting fraudulent messages to be proven and processed.

Description: prove process proveAndProcess Replica Failed
XAppConnectionManager setConfirmation

Annotate the , , and with the modifier to ensure that they cannot be executed while the contract is on state.Recommendation: prove process proveAndProcess notFailed Failed

The Nomad team is moving to a design where the state on the replica is superfluous, and now the applications have the responsibility of blocking replicas when they observe

fraud. We recommend describing this extensively in your documentation for external developers.

Update: FAILED

QSP-3 Messages Can Be Delivered Out Of Order

Severity: Medium Risk

FixedStatus:

File(s) affected: Replica.sol

According to the , the replica has to ensure that messages are delivered in order. However, that's not the case. As long as a message has been marked as

, the processor is free to call the method in the replica in any order it wants. This is a problem because a malicious processor or malicious third-party (the method is

not protected, so anyone could call it) could force the replica to process their messages in a way that is beneficial to them (front-run).

Description: Nomad documentation

PROVEN process process

We strongly recommend adding code to the replica to ensure that messages are always processed in order. Otherwise, if the risk is deemed acceptable, update the Nomad

documentation to highlight that the replica can deliver messages out of order and that it's up to the dApps to protect themselves against this.

Recommendation:

The Nomad team pointed out that their original documentation was wrong; messages cannot be delivered in order as that could be a dangerous DOS attack vector. Therefore, they

updated the documentation to properly reflect this.

Update:

QSP-4 Long Queues Can Lead To Denial Of Service

Severity: Medium Risk

MitigatedStatus:

,File(s) affected: Home.sol Queue.sol

Whenever the method in the contract is called, it will validate if the queue contains the new root. However, the queue method does a linear scan of all the

items in the queue. If the root has not been updated in a long time (either mistakenly or maliciously), the queue might have too many items, causing the method to throw an

exception.

Description: update Home contains
contains Out of

Gas

Consider if a mapping or a separate data structure could be used to make the method more resilient to exceptions.Recommendation: contains Out of Gas

The Nomad team acknowledges the issue and has decided to mitigate the issue by having an Updater sign a root near the beginning of the queue, thereby preventing the

exception; the Updater will have to repeat the same steps until the queue is empty. In the future, they will solve the problem as part of a new design. Meanwhile, we still recommend documenting

the mitigation steps so that the Updater is well aware of what to do if this problem occurs.

Update: Out of Gas

QSP-5 Method Can Be Abused_dust

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: BridgeRouter.sol

The method is used to send recipients a substantial amount of for gas bootstrapping (0.06 , which is around 140 USD currently). The method only checks that

the recipient ETH balance is less than the . A malicious trader could repetitively send small trades, to constantly receive the and drain the from

Ether.

Description: _dust Ether Ether
DUST_AMOUNT DUST_AMOUNT BridgeRouter

Consider if the functionality is needed at all. If not, remove it. Otherwise, add additional checks to make sure it cannot be abused.Recommendation: _dust

The Nomad team is aware that this function can be abused, but believes that the risk is low as it will never contain big amounts of Ether.Update:

QSP-6 Watcher Availability Concern

Severity: Medium Risk

MitigatedStatus:

,File(s) affected: ethereum.ts moonbeam.ts

Nomad architecture assumes the liveness of the watcher running on top of it to secure the Dapp running on top of it. We need the watcher to unroll from the replica within 30

minutes. Therefore, the availability of the watcher is critical. The current deployment is only configured with a single watcher, which concerns the availability of any hardware incident that

occurs.

Description:

Deploy and configure with a minimum of 2 watchers, ideally cross-region, for high availabilityRecommendation:

The Nomad team highlighted that there are multiple watcher instances (sharing the same key), deployed across different regions, to protect against cloud provider failure.Update:

QSP-7 Replay Attack In The improperUpdate

Severity: Low Risk

AcknowledgedStatus:

,File(s) affected: BridgeRouter.sol Replica.sol

In the function, we are taking the as a parameter to verify the correctness of the transaction. The issue here is that the signature is not associated

to any nonce or address. Thus, the signature can be replayed since there is no nonce associated.

Description: improperUpdate _signature

Consider adding a nonce to each signature.Recommendation:

https://docs.nomad.xyz/#replica

The Nomad team believes that the likelihood of this occuring in practice is quite low.Update:

QSP-8 Missing Verification On The FEE_NUMERATOR

Severity: Medium Risk

FixedStatus:

File(s) affected: BridgeRouter.sol

During an upgrade of the contract, could be set to a value greater than 10000. This behaviour would result in impacting the logic of the contract.Description: PRE_FILL_FEE_NUMERATOR

To solve the issue, a check should be placed in the function that makes sure that the Percentage is always less than 100%.Recommendation:

The Nomad team deprecated the fast liquidity functionality and removed most of the code. This issue cannot occur anymore.Update:

QSP-9 Missing Validation On The optimisticSeconds

Severity: Medium Risk

FixedStatus:

The parameter is not validated, so it could be set to 0 or a minimal amount. This would allow updates to be accepted in a very short time, thereby not

leaving the replica with enough time to respond to fraud (this is also a problem in the method).

Description: optimisticSeconds
initialize

Consider verifying optimisticSeconds to be greater than a reasonable minimum value.Recommendation:

The Nomad team added validation to ensure that the value cannot be too low or too high. However, this check can be bypassed to set low values in test

environments; therefore, we recommend adding checks to the deployment script to ensure it's not possible to set low values in production by mistake.

Update: optimisticSeconds

QSP-10 Liquidity Provider Fee Can Be Bypassed

Severity: Low Risk

FixedStatus:

File(s) affected: BridgeRouter.sol

In the function, the is calculated using the following formulaDescription: _applyPreFillFee _amtAfterFee

(_amnt * PRE_FILL_FEE_NUMERATOR) /
PRE_FILL_FEE_DENOMINATOR;

The issue here is that is if is less than the will be equal to 0._amt * PRE_FILL_NUMERATOR PRE_FILL_FEE_DENOMATOR _amtAfterFee

Consider verifying that is always greater than .Recommendation: _amt * PRE_FILL_NUMERATOR PRE_FILL_FEE_DENOMATOR

The Nomad team deprecated the fast liquidity functionality and removed most of the code. This issue cannot occur anymore.Update:

QSP-11 Front Running Can Make Liquidity Providers Lose Their Funds

Severity: Low Risk

FixedStatus:

File(s) affected: BridgeRouter.sol

The method allows a liquidity provider (LP) to fill a transfer that hasn't been verified yet for a fee. This method ensures that only one liquidity provider can provide liquidity

to a single transfer (). However, it does not verify if the transfer has already been processed by the method (). A malicious processor (or even a malicious miner) could wait to

send the message that will trigger the method just before a method call is done, thereby letting the recipient receive funds from both, the router and the liquidity provider. To

make things worse, once the method has been processed, another LP would be able to call again for the same transaction.

Description: preFill
L230 handle L107

handle preFill
send preFill

Consider modifying the method in the contract to always set the for the transaction if the flag is on. If the

transaction was not pre-filled by an LP, set the router itself as the liquidity provider. Otherwise, leave the already set (remove the statement in).

Recommendation: handle BridgeRouter liquidityProvider fastEnabled
liquidityProvider delete L337

The Nomad team deprecated the fast liquidity functionality and removed most of the code. This issue cannot occur anymore. However, some of the fast liquidity code is still present (for

example, the still has cases for fast liquidity). We recommend removing all dead code to avoid any potential bug.

Update:

_handleTransfer

QSP-12 BridgeToken Allows The Owner Of The Contract To Burn Tokens Even Without Their Approval

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: BridgeToken.sol

The owner of a instance () can burn tokens of any address, even without the token owner's consent. While the router is unlikely to steal tokens, future

iterations of the router could mistakenly burn tokens without the user consent.

Description: BridgeToken BridgeRouter

Modify the method in the contract to only be able to destroy tokens that the owning address has approved (via the methods). We recommend

following the same approach used by OpenZeppelin in their .

Recommendation: burn BridgeToken approve
contractERC20Burnable

The Nomad team confirmed that this is by design. Moreover, the risk is quite low as the owner of the is the itself.Update: BridgeToken BridgeRouter

QSP-13 Will Not Complain If The Remote Router Is Not Present_sendToAllRemoteRouters

Severity: Informational

AcknowledgedStatus:

File(s) affected: GovernanceRouter.sol

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3bdf4bfd29b145288ec741bef259a384007ed5cf/contracts/token/ERC20/extensions/ERC20Burnable.sol#L35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3bdf4bfd29b145288ec741bef259a384007ed5cf/contracts/token/ERC20/extensions/ERC20Burnable.sol#L35
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3bdf4bfd29b145288ec741bef259a384007ed5cf/contracts/token/ERC20/extensions/ERC20Burnable.sol#L35

When transferring the governor, the will call the method to send the message to all remote chains. However, the method does

not validate if a domain has no router configured (empty router). If the domain has no router, the method will still dispatch the message without any indication that the method will fail on the

receiving domain.

Description: GovernanceRouter _sendToAllRemoteRouters

Add a validation with a proper error message on to make sure that a router is available before dispatching the message to the remote chain.Recommendation: _sendToAllRemoteRouters

The Nomad team has decided not to address this issue, as the impact is quite low; we agree with their assessment.Update:

QSP-14 Possible To Change DecimalsBridgeToken

Severity: Low Risk

AcknowledgedStatus:

,File(s) affected: BridgeToken.sol OZERC20.sol

The method allows anyone to change the token information (name, symbol, and decimals) as long as the new details match the set by the owner. This

means that, with the owner's consent, it's possible to change the decimals of the token. If mishandled (mistakenly or maliciously), this could have serious consequences, as the decimals are

needed to perform proper token math.

Description: setDetails detailsHash

Consider if it's necessary to ever allow changing decimals after they have been set. If it's still deemed necessary, document that it is discouraged to ever introduce changes to

them, as that can have unforeseen consequences.

Recommendation:

The ability to change decimals is important on the overall design. Given the impact is also low, the Nomad team decided not to make any code changes.Update:

QSP-15 Contracts Might Not Be Transferred To Rightful Owner

Severity: Low Risk

MitigatedStatus:

, , , , , ,File(s) affected: GnomadModule.sol BridgeToken.sol NomadBase.sol UpdaterManager.sol XAppConnectionManager.sol UpgradeBeaconController.sol
XAppConnectionClient.sol

Contracts inheriting from or will have the address that deployed the contract as the owner. If the deployment script does not change the

ownership right away, the deployment address will keep ownership (along with all its privileges) instead of the rightful owner (like governance).

Description: Ownable OwnableUpgradeable

Consider transferring ownership of the contracts to the rightful owner directly in the constructor (or initializer function).Recommendation:

The Nomad team added checks in the deployment scripts to ensure that the contracts end up assigned to the right owner.Update:

QSP-16 Custom Tokens Could Be Malicious

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: BridgeRouter.sol

Custom ERC20 tokens might not work as expected due to faulty or malicious implementations (for example, not transferring tokens or burning tokens as expected). : This is

marked low, as only the owner can enrol custom ERC20 tokens.

Description: Note

Make sure to verify that the code of custom ERC20 tokens is correct and is not malicious. If it's not possible to do due diligence on every custom token, consider adding checks

in code to ensure that the balance after the operations on custom ERC20 tokens matches what the router expects.

Recommendation:

The Nomad team believes that governance vetting of tokens should be sufficient to prevent malicious tokens from being enrolled.Update:

QSP-17 Possible To Renounce Ownership

Severity: Low Risk

MitigatedStatus:

, , , , , ,File(s) affected: GnomadModule.sol BridgeToken.sol NomadBase.sol UpdaterManager.sol XAppConnectionManager.sol UpgradeBeaconController.sol
UpgradeBeaconController.sol

All the contracts that extend from or inherit a method called . The owner of the contract can use this method to give up

their ownership, thereby leaving the contract without an owner. If that were to happen, it would not be possible to perform any owner-specific functionality on that contract any more.

Description: Ownable OwnableUpgradeable renounceOwnership

Consider overriding the function so that ownership cannot be renounced.Recommendation: renounceOwnership

The Nomad team fixed the issue in most of the files by overriding the as a no-op to make sure that ownership cannot be renounced. However, the fix was not

introduced to the file. We recommend adding the same fix if ownership of that file should not be renounced.

Update: renounceOwnership
UpgradeBeaconController

QSP-18 Signature Replay Attack: Multiple Deployments

Severity: Low Risk

AcknowledgedStatus:

The attacker can replay the message's signature if there are multiple deployments in the same chain running with the same updater. In the worst case, one can use it to call

to fail the home contract.

Description:

Home.sol:improperUpdate

1. The team deploys and has some messages dispatched.Exploit Scenario: Home.sol

1. The Updater signs a root and calls with signature that moves the root from an empty one (the initial commit root) to .Home.sol:update sign1 root1

2. After some period, the team decides to deploy another (e.g., For a different app to decouple or other projects). Nonetheless, the team deployed with the same
updater.

Home.sol

3. Anyone can call the immediately after the second deployment with the signature from the first deployment. Since the initial commit
root should be the same for all home deployments (null Merkle tree root), it will pass the verification.

Home.sol:improperUpdate sign1

4. Now, the status of the home contract has become FAILED.

Consider following the EIP712 suggestion that includes: , , , , and in the domain separator (). Current implementation

inside function only includes and the name “NOMAD”. We recommend adding , and to the domain

separator to protect from the replay attack.

Recommendation: name version chainId verifyingContract salt link

NomadBase.sol:_homeDomainHash _homeDomain version verifyingContract salt

Since both and inherit , the fix above will solve for both contracts.Home.sol Replica.sol NomadBase.sol

The Nomad team decided not to take any additional steps as the EIP-712 is not chain agnostic. While this is a legitimate concern, not adding additional parameters to the signature could allow a

signature to be replayed if the same contract is deployed twice with the same updater in a single chain (this could happen if multiple environments are deployed on the same chain, for

example). Therefore, we recommend exploring if there’s a way to add the , and to the signature. Otherwise, make sure to never deploy two contracts with

the same updater in a single chain.

Update:

version verifyingContract salt

QSP-19 Proving With An Empty Leaf

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: Replica.sol

The function accepts the input and checks if it is part of the Merkle tree. Nomad architecture uses a sparse Merkle tree, in which all the non-used

leaves default with empty . This nature of the sparse Merkle tree makes it possible for one to pass an empty as the and some artificial Merkle proof with a specified

index to pass the inclusion check. The “empty leaf” message status can later be flagged as , resulting in the mapping in an undesired state.

Description: Replica.sol:prove _leaf
bytes32 bytes32 _leaf

PROVEN messages

Validate that the input of the function is not empty.Recommendation: _leaf Replica.sol:prove

The Nomad team responded that "We consider it to be effectively impossible to find the preimage of the empty leaf". We believe the Nomad team has misunderstood the issue. It is not

related to finding the pre-image of the empty bytes. Instead, it is about being able to prove that empty bytes are included in the tree (empty bytes are the default nodes of a sparse Merkle tree).

Therefore, anyone can call the function with an empty leaf and update the status to be proven.

Update:

prove

QSP-20 Integer Overflow /Underflow

Severity: Low Risk

FixedStatus:

File(s) affected: Replica.sol

The codebase is not using in the arithmetic operations. Some places can potentially be overflow or underflow in edge cases.Description: SafeMath

Either upgrade the solidity version to be higher than 0.8.0, where it automatically reverts when underflow and overflow, or use the library to guard this.Recommendation: SafeMath
— : the can be set up to max of . The calculation is of overflow risk. For this case, we

recommend defining a max value (e.g., max of uint64) for the in and .

Replica.sol:L153 optimisticSeconds uint256 block.timestamp + optimisticSeconds
optimisticSeconds Replica.sol:setOptimisticTimeout Replica.sol:initialize

The Nomad team added checks to ensure that the can never overflow. While this was the only overflow that we identified, there could be other

overflow/underflow instances in the codebase or new ones could be introduced in the future. We recommend being very careful when dealing with arithmetic operations, as the contracts are still

vulnerable to this kind of issues (codebase is using Solidity 0.7.6).

Update: optimisticSeconds

QSP-21 Tighten Validations Around Message

Severity: Low Risk

AcknowledgedStatus:

, , ,File(s) affected: Replica.sol Message.sol GovernanceMessage.sol BridgeMessage.sol

Message is the first-class citizen of the Nomad system. However, it uses a dependency in which the implementation aggressively uses assembly. We

recommend taking extra care on all the messages and adding stricter validation to reduce the risk of an invalid message passed across the domain.

Description: TypedMemView.sol

We recommend adding whenever is called to convert a byte to . The reason is that

can return a message if there is an error in .

Recommendation: TypedMemView.sol:assertValid TypedMemView.sol:ref TypedMemView
TypedMemView.sol:ref NULL TypedMemView.sol:build
Another observation is that the implementation encodes data with . data is only 20 bytes, so there will also be 12 extra bytes in front. However, the message-related

libraries do not check whether it starts with only padding 0s or not. Later, when the message is decoded in , it ignores the first 12 bytes. Without the

stricter check on address information encoding, the messages will pass dirty bytes. We recommend adding validation that those encoding must start with 12 bytes of padding 0s.

address bytes32 address
TypeCasts.sol:bytes32ToAddress

address
Following are the spotted places for the changes:

:• Message.sol:formatMessage
check that should not be empty_messageBody•

and : verify that the first 12 bytes can only be padding ._sender _recipient 0•

: add a function similar to or . We
can check the message length should be larger than . Apply this check in after it is converted to with

.

• Message.sol isValidMessage GovernanceMessage.sol:isValidBatch GovernanceMessage.sol:isValidTransferGovernor

Message.sol:PREFIX_LENGTH Replica.sol:L188 TypedMemView

.ref(0)

:• governance/GovernanceMessage.sol:formatTransferGovernor
add validation that it starts with 12 bytes of .0•

:• governance/GovernanceMessage.sol:serializeCall
add validation that it starts with 12 bytes of .0•

add check after calling in .TypedMemView.sol:assertValid ref(0) L96•

:• governance/GovernanceMessage.sol:getBatchHash
add check after calling in .TypedMemView.sol:assertValid ref(0) L108•

: add a helper function . We should check that is not zero in the function and starts with only padding s and then
apply this check to the following places:

• BridgeMessage.sol isValidTokenId domain id 0

: inputBridgeMessage.sol:formatMessage tokenId•

https://eips.ethereum.org/EIPS/eip-712

•
: input and .BridgeMessage.sol:formatTokenId _domain _id•

: inputBridgeMessage.sol:getPreFillId _tokenId•

: add check after calling in .• BridgeMessage.sol:formatTransfer TypedMemView.sol:assertValid ref(0) L148

: add check after calling in .• BridgeMessage.sol:formatTokenId TypedMemView.sol:assertValid ref(0) L178

: add check after calling in .• BridgeMessage.sol:getPreFillId TypedMemView.sol:assertValid ref(0) L227

: after the line , we should check if the message is valid or not by calling .• Replica.sol:L188 bytes29 _m = _message.ref(0); TypedMemView.sol:assertValid

: add a check with after .• governance/GovernanceRouter.sol:L233 TypedMemView.sol:assertValid bytes29 _msg = _message.ref(0);

We agree that is safe after double-checking the implementation, and also will help check the message length eventually. However, suppose we need to allow passing

messages with 32 bytes of address for potential domains. In that case, we recommend at least adding the validation on so whenever a 32 bytes data is

converted to an address in Ethereum, it will not allow dirty bytes to pass.

Update: ref(0) slice()
TypeCasts.sol:bytes32ToAddress

QSP-22 Abusing Underflow

Severity: Low Risk

MitigatedStatus:

File(s) affected: Encoding.sol

The abuses underflow to run the for-loop. The looping variable starts from 15 and decreases one by one until it gets underflow and becomes 255 to break

the for-loop. The underflow mechanism will work for solidity versions before 0.8.0 as solidity 8 introduces the safe math check into the run time. Nonetheless, the definition of the

contract is , which means it can potentially be deployed with a version higher than 0.8.0.

Description: Encoding.sol:L52 i
pragma

>=0.6.11

Instead of abusing underflow, run them for loop with instead.Recommendation: for (uint8 i = 15; i >= 0; i -= 1) {...}

The Nomad team locked the Solidity version to 0.7.6, so the underflow will not fail (unless the file is ever updated to a newer version of Solidity). However, as a best practice, we still

recommend refactoring the code as there are cleaner options available.

Update:

QSP-23 Missing Input Validation

Severity: Low Risk

AcknowledgedStatus:

, , , , ,File(s) affected: Home.sol Replica.sol XAppConnectionManager.sol BridgeRouter.sol Router.sol GnomadModule.sol

```Description:

In• contracts-core
: there should be check onHome.sol:update _newRoot != _committedRoot•

and : should check the is not zero address. Furthermore, we can add validation that the updater
should not be a contract, as the signature of the updater is required.
Home.sol:setUpdater Replica.sol:setUpdater _updater•

: there should be check on . Updater can try to override the timestamp in
without this check.
Replica.sol:update _newRoot != _committedRoot confirmAt Replica.sol:L153•

:XAppConnectionManager.sol:unenrollReplica
should not be 0_domain•

should not be empty_updater bytes32.•

should not be empty_signature bytes.•

•

:XAppConnectionManager.sol:setHome
should not be zero address_home•

•

:XAppConnectionManager.sol:ownerEnrollReplica
should not be zero address_replica•

should not be 0_domain•

should be checked with the public variable of the replica. e.g. ._domain remoteDomain Replica(_replica).remoteDomain() == _domain•

•

:XAppConnectionManager.sol:ownerUnenrollReplica
should not be zero address_replica•

•

:XAppConnectionManager.sol:setWatcherPermission
should not be zero address_watcher•

should not be 0_domain•

•

: should check is not zero address.governance/GovernanceRouter.sol:transferRecoveryManager _newRecoveryManager•

: should check and is not zero addressgovernance/GovernanceRouter.sol:initialize _xAppConnectionManager _recoveryManager•

: should check is a smart contract.upgrade/UpgradeBeacon.sol:constructor _controller•

In• contracts-bridge
should check not being 0BridgeRouter.sol:send _destination•

should check is not 0 and is not empty. Also, it should check that the input is not the local domain.BridgeRouter.sol:enrollCustom _domain _id _domain•

should check is not zero addressBridgeRouter.sol:migrate _oldRepr•

should check not being 0BridgeRouter.sol:preFill _origin•

In• contracts-router



•
should check is not 0, and is not empty bytesRouter.sol:enrollRemoteRouter _domain _router•

In• zodiac-module-gnomad

GnomadModule.sol:constructor
check , , is contract. (e.g., with open-zeppelin library: )_avatar _target _manager doc•

check is not a zero address_controller•

check is not zero_controllerDomain•

•

`GnomadModule.sol:setUp
check , , is contract_avatar _target _manager•

check is not a zero address_controller•

check is not zero_controllerDomain•

•

: check that starts with only padding 0s for the first 12 bytes.GnomadModule.sol:onlyValid _sender•

: check is contractGnomadModule.sol:setManager _manager•

GnomadModule.sol:setController
check is not a zero address_controller•

check is not zero ```_controllerDomain•

•

Add validation on the input variables as put in the description.Recommendation:

The Nomad team decided not to add additional validation as that would end up increasing gas costs.Update:

QSP-24 Incompatibility With Deflationary Tokens

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: BridgeRouter.sol

In the function , when transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received amount due to the charged

(and burned) transaction fee. As a result, this may not meet the assumption behind these low-level asset-transferring routines and will bring unexpected balance inconsistencies, this technique is

used for the same chain.

Description: _handleTransfer (L348)

Add necessary mitigation mechanisms to keep track of accurate balances. You can store the value of the balance of the contract, and after the transfer, get the new balance

and calculate the difference between the old and the new value of the balance. The difference should be 0 otherwise invalid amounts will be transferred to the other side of the bridge. This

technique is used only for operations in the same chain, consider using a proper design for cross chain. Also, there should be documents stating the limitation on the ERC20 tokens the system

supports.

Recommendation:

The Nomad team added documentation to highlight this limitation.Update:

QSP-25 Approve Race Condition

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: OZERC20.sol

The standard ERC20 implementation contains a widely known racing condition in it approve function, wherein a spender can witness the token owner broadcast a transaction

altering their approval and quickly sign and broadcast a transaction using transferFrom to move the current approved amount from the owner's balance to the spender. If the spender's

transaction is validated before the owner's, the spender will be able to get both approval amounts of both transactions.

Description:

Use and functions to modify the approval amount instead of using the approve function to modify it.Recommendation: increaseAllowance decreaseAllowance

The Nomad team acknowledged the issue knowing the ubiquity of this design throughout the ecosystem, and they decided not to address this.Update:

QSP-26 Floating Pragma

Severity: Low Risk

FixedStatus:

,File(s) affected: GnomadModule.sol BridgeMessage.sol

The contract makes use of the floating-point pragma ^0.6.11. Contracts should be deployed using the same compiler version. Locking the pragma helps ensure that contracts are

not unintentionally deployed using another pragma, such as an obsolete version, that may introduce issues in the contract system.

Description:

Consider locking the pragma version. It is advised that floating pragma should not be used in production. Both truffle-config.js and hardhat.config.js support locking the

pragma version.

Recommendation:

The team have locked the pragma version.Update:

QSP-27 Modifier Allows This Contract To Be The Caller

Severity: Informational

AcknowledgedStatus:

The and the modifiers check that the is an address registered as (or ) or if the

address is the contract itself. However, the method is using Solidity's low-level call function, so methods dispatched from it will have the

as the . While we couldn't find any invalid use, governance calls executed through could be used to bypass the or

Description: onlyGovernor onlyGovernorOrRecoveryManager msg.sender governor recoveryManager
GovernanceRouter _callLocal

GovernanceRouter msg.sender _callLocal onlyGovernor

https://docs.openzeppelin.com/contracts/4.x/api/utils#Address-isContract-address-


modifiers.onlyGovernorOrRecoveryManager

Document that is a delicate function that could bypass restrictions, so that owners are careful when dispatching governance calls. Furthermore, make sure that

future refactorings do not let to be called by non-privileged users.

Recommendation: _callLocal
_callLocal

The Nomad team decided not to change the code as this behavior is by design. However, we still recommend adding documentation to the code to warn developers about the risk of

bypassing restrictions by mistake when dispatching governance calls.

Update:

QSP-28 BridgeRouter Must Be The Owner Of The TokenRegistry To Work

Severity: Informational

MitigatedStatus:

,File(s) affected: TokenRegistry.sol BridgeRouter.sol

During its operation, the contract calls the and on the contract. However, these methods can only be

called by the owner of the contract. In other words, the can only work if it's the owner of the contract.

Description: BridgeRouter ensureLocalToken enrollCustom TokenRegistry
BridgeRouter TokenRegistry

Consider transferring the ownership of the contract to the directly from the method to avoid any deployment

misconfiguration. Also document that must be the owner of the for it to work properly.

Recommendation: TokenRegistry BridgeRouter initialize
BridgeRouter TokenRegistry

The Nomad team added off-chain checks to their deployment script to make sure ownership is properly transferred to the rightful owner. Thus, it will ensure that the is

the owner of the .

Update: BridgeRouter
TokenRegistry

QSP-29 Signature Replay Attack: Hard Fork

Severity: Informational

AcknowledgedStatus:

The contracts have a hard-coded “domain” value set on deployment. The hardcoded domains will work until the chain is hard forked. Once a hard fork occurs, the signature of both

chains will be considered valid on both the original and the hard-forked chain.

Description:

1. The team deploys Nomad on chain A and chain B.Exploit Scenario:

1. One day, chain A is hard forked. Both chain A and the forked chain A' have the Nomad contracts running on top of it.

2. After the hard fork, the contract in chain A dispatches msg1, and the contract in chain A' dispatches msg2. Since msg1 and msg2 are different, now the root diverges on
the forks.

3. Updater signs both the roots of msg1 and msg2.

4. Anyone can use the signature to call the function to prove fraud.NomadBase.sol:doubleUpdate

The operation team of Nomad should be aware of this and be clear on which chain to continue the service if a hard fork happens.Recommendation:

The Nomad team stated that it is a requirement that domains are unique for disparate deployments. In the case of a hard fork, Nomad can only continue to operate on one of the

chains.

Update:

QSP-30 Mass Un-enrollment

Severity: Informational

AcknowledgedStatus:

, , ,File(s) affected: Replica.sol XAppConnectionManager.sol Router.sol

From the discussion with the Nomad dev team, the default and the recommended way to add a new dapp on top of the Nomad message system is to reuse the contract,

but each will have its own . The can configure the watcher that the dapp trusts. Suppose the updater provides an invalid

update to the . In that case, the watcher can call within the to stop the message from being processed

on the of the dapp.

Description: Replica
Router XAppConnectionManager XAppConnectionManager

Replica XAppConnectionManager.sol:unenrollReplica optimisticSeconds
Router

However, a single invalid update on the replica will trigger un-enrollment for all the routers connected to the replica. There is a capacity (gas) limit on how many un-enrollment calls the chain can

handle within the .optimisticSeconds

This should be fine with the current phase where the team plans to deploy only 2 dapps (governance and token bridge) on top of the Nomad message system. Nonetheless,

suppose anyone is interested in building a dapp on top of the Nomad message system. In that case, they should be aware of this and use a new replica when a certain number of routers are

already sharing the existing replica.

Recommendation:

The Nomad team believes that it’s unrealistic that in the near future there will be a number of xApps so large that the blockchain will not have enough blockspace to accommodate the

un-enrollment.

Update:

QSP-31 Susceptible To Signature Malleability

Severity: Informational

AcknowledgedStatus:

File(s) affected: BridgeToken.sol

function receives the signature and uses to get the recovered address to verify the signature. However, the call does not

protect from the malleable signatures of ECDSA (see: ). As a result, it will be possible for another user to replay the call with a different signature even without holding the address's

private key and still passes the verification. Fortunately, the current implementation includes a which will increase each time when building the of the signature. The immediate

increase in the nonce avoids replay attacks with this vulnerability.

Description: BridgeToken.sol:permit ecrecover ecrecover
SWC-117

nonce digest

Use the open-zeppelin to recover. The open-zeppelin library has already included the check. Alternatively, please add the check, so we are only using lower-

value ( ) to mitigate the malleable signature issue.

Recommendation: ECDSA library

s uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0

The Nomad team has acknowledged the issue that doesn't rely on signature non-malleability.Update: permit

QSP-32 Missing Events

https://swcregistry.io/docs/SWC-117
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8e0296096449d9b1cd7c5631e917330635244c37/contracts/cryptography/ECDSA.sol#L63


Severity: Informational

AcknowledgedStatus:

, , ,File(s) affected: Home.sol Replica.sol BridgeToken.sol GnomadModule.sol

Nomad architecture heavily relies on the off-chain components to sync with the on-chain status. It is crucial to emit an event on critical state updates.Description:

- and : is a critical role in the whole system. If there is any update, the off-chain component should be

synced immediately.

Recommendation: Home.sol:setUpdater Replica.sol:setUpdater Updater

: add a event so that the watcher or the processor can know about the newly-proven messages that the processor can process. The
event is critical so the processor can see if it should call or just .

• Replica.sol:prove Prove

Replica.sol:proveAndProcess Replica.sol:process

: add a custom event when is true. Some off-chain components on the bridge operator should monitor this and
update the ERC20 token information as soon as possible to avoid confusing the user who first sends the token to the domain.

• BridgeToken.sol:setDetails _isFirstDetails

: add an event when manager is updated• GnomadModule.sol:setManager

: add an event when the controller is updated• GnomadModule.sol:setController

The Nomad team has added some events in their contract. However, they decided not to add additional events to the and methods.Update: prove setDetails

QSP-33 Trusted Actors Risk And External Agents Have Too Much Power

Severity: Informational

AcknowledgedStatus:

We will describe the risk from a dapp operator's point of view and a user of the dapp's perspective.Description:

From the dapp operator's point of view, the most considerable risk is a fraudulent updater. The private key of the updater is mostly going to be in a hot wallet, as it has to sign the update

frequently. If the key is ever leaked, the hacker can use the key to stop the Nomad service by signing invalid updates to the replica. The invalid update forces the dapp operator/watcher to cut

off the router's replica connection. However, this usually only solves half of the problem. If we look at the standard pattern of a cross-chain action:

1. First, perform some action in the home domain.

2. Dispatch the message via the home contract

3. Updater signs the update

4. Relayer sends the update to the replica.

5. Process it in the router.

The problem is in the first step. Some action is already performed in the home domain. Although the watcher can stop invalid messages from being processed, we cannot roll back the changes

on the home domain. For instance, for a token bridge, the token is already locked in the bridge router before dispatching the “transfer” message. If any fraud was to occur, we could not easily

roll back the result of the token-locking in the home domain. Unless we introduce a better flow, the dapp on top of Nomad will likely need some privileged roles to recover from the failure state in

the worst case.

From the dapp users' point of view, they have to trust the dapp operator (watcher). If the watcher colludes with the updater, they can process any invalid messages to the router. Also, they

should be aware of the crypto-economy nature of the bond-slashing mechanism of Nomad. For instance, in a token bridge dapp, it might be best practice not to send tokens value more than

X% (e.g., 50%) of the slash-able bonds from the updater so that it is less motivated to perform fraud. The correct operation of the system is completely reliant on external agents performing

crucial tasks. If one or more of them stops working as expected (due to malfunction or maliciously), it could put the whole system at risk and endanger the operations happening in it. In

particular, we have detected the following problems:

Updater: Currently, there's no slashing mechanism to punish updaters that have committed fraud. Without it, external updaters will have significant incentive to
participate on fraud.

•

Relayer: Relayers are supposed to forward updates from the home contract to the replicas in other chains. However, relayers might delay forwarding the updates
(maliciously or due to heavy load) to one or more chains. The impact from this could range from delays to full denial-of-service (messages won't be able to be
delivered to their destination).

•

Processor: Processors are supposed to prove and send the messages to the replica, who will eventually send them to the end recipients. However, there is no
mechanism to ensure that the processor sends ALL messages or that it sends them in a timely manner; a malicious processor might decide not to send one or more
messages that are not convenient to it.

•

Watcher: Watchers are the agents that keep the other participants honest. They are supposed to observe homes and replicas to ensure that they are working
properly. However, if watchers are not working properly (due to malfunction or if they are colluding with other malicious actors) fraudulent operations might go
through the system.

•

The documentation does not describe how external agents are chosen, rotated, how they stake their funds, and how they are slashed if a malicious operation is detected. Without this

information, it's not possible to assess if the economic incentives are sufficient to discourage fraud throughout the system.

Note:

Design mechanisms to ensure that all external agents are always up and running and operating honestly. If agents can be external parties, make sure that staking and

slashing is in place to incentivize honest behaviour. On the other hand, if agents are internal, make sure that there is enough redundancy and automated mechanisms to roll up more agents if

the load is increasing or one of them is misbehaving.

Recommendation:

Also, the team should take extra care of the private-key protection of the updater and the watcher. The Nomad team should provide documents on securing these keys in their system (e.g., using

a vault or hardware security module).

The Nomad team should also guide best practices for those who would like to run a new dapp on top of the Nomad message system with documents. The document should include the security

model analysis for their users.

From Nomad Team "Relayers and Processors are permissionless roles with no trust assumptions. Anyone can run a Relayer or a Processor; if current actors’ operations are

unsatisfactory, anyone with a vested interest (or not), can and should run one themselves. Otherwise - some component of trusted actors are explicitly part of the security model, and a

generally accepted “necessary evil” for cross-domain communication (c.f. Zamyatin et al SoK on cross-chain comms https://eprint.iacr.org/2019/1128.pdf). At this stage, the lack of bonding for

the Updaters is intentional, as we are working towards decentralized Updater rotation. When we move to a fully trust-minimized design, Updaters will be bonded and a rotation system will be in

place. Watchers are a trusted role, but the scope of their trust is very limited. Watchers are configured by the application,not the core protocol. They have the power to halt communications for

the app; they do NOT have the power to submit malicious messages (as in proof-of-authority systems like multisig or validator bridges). The best mitigation for this is to have the infrastructure

and documentation in place for anyone to run their watcher (the apps themselves) or to easily provision a watcher from Nomad. A greater watcher set, in our opinion, offsets the risk inherent to

the trusted design."

Update:

QSP-34 Transactions Are Marked As Processed Even If They Fail

Severity: Undetermined



FixedStatus:

File(s) affected: Replica.sol

The method forwards messages to their destination and mark the messages as processed regardless of the outcome of the method. If dApps do not account for this, they

might end up in invalid states. For example, the is assuming that trades sent across the chain always work and has no functionality to recover if the method fails for

any reason.

Description: process
BridgeRouter handle

Consider if there are cases where failed transactions (like exceptions) should not be marked as processed. Otherwise, document clearly that messages will not

be processed if they fail for any reason and that it's up to the dApps to account for those failures (also determine how the should behave if the trade fails on the receiving

chain).

Recommendation: Out of Gas
BridgeRouter

The Nomad team refactored the code to stop marking transactions as processed when they fail. With this, now it's possible to retry messages until they succeed.Update:

QSP-35 Upgradeable Contracts Can Be Working With Older Versions

Severity: Undetermined

AcknowledgedStatus:

Communication between the different smart contracts across the system is supposed to work in perfect unison. However, if contracts are not upgraded carefully, it's possible that

newer contracts will end up communicating with older (potentially not compatible) versions of other contracts; this could have unforeseen consequences.

Description:

Consider adding checks to the code to ensure that contracts can only communicate with compatible versions of the other contracts.Recommendation:

The Nomad team decided to add fork tests rather than changing smart contract code.Update:

QSP-36 No Enforcement On The Governance Messages To Be Delivered

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: GovernanceRouter.sol

On top of the regular way of sending messages, governance actions need an external agent to call the method. If this external agent does not call this

method, the batch of actions will stay forever in status and the governance actions will never be executed.

Description: executeCallBatch
Pending

Determine which external agent is in charge of executing governance actions, and design a mechanism to ensure it does so in a reliable and timely manner. Furthermore,

consider documenting why governance actions have to be executed through this external agent.

Recommendation:

The Nomad team considers this behavior by design.Update:

QSP-37 Possible To Run While Local Governance Router Is On RecoveryexecuteCallBatch

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: GovernanceRouter.sol

Most methods in the contract are annotated with modifiers to prevent them from being executed when the contract is in recovery mode. However, the

is not annotated with any of these modifiers; it can be called regardless of the recovery status. It is unclear if this is intentional or if it's missing the right modifier. :

While this method could bypass the recovery mode, the calls to execute originated from the governor router, so they are unlikely to be malicious.

Description: GovernanceRouter
executeCallBatch Note

Determine if it should be possible to call the when the local governance router is in recovery. If it is necessary, make sure to document this decision.

Otherwise, annotate the method with the modifier.

Recommendation: executeCallBatch
onlyNotInRecovery

The Nomad team considers this behavior by design.Update:

QSP-38 Updater Stop Signing New Roots

Severity: Undetermined

AcknowledgedStatus:

, ,File(s) affected: GovernanceRouter.sol Home.sol BridgeRouter.sol

If the updater stops signing new messages, it can freeze the system without penalty. However, the impact on the dapps on top of it can be huge. We will analyse some exploit

scenarios that this attack can cause.

Description:

Governance Router : First, the governance router relies on the Nomad message system to dispatch the governance commands from the main governance domain
to other domains. Nonetheless, the updater can attack the governance by refusing to sign the governance commands or trying to update an invalid root to force the
governance router to unroll from the replica and not be able to force-drop the governance command. The risk of not applying the governance commands can be huge
to the nomad system, as it is usually about system updates or incidence handling.

•

Fortunately, the current implementation has the role of , which can switch the to the recovery mode and take over the control to do actions directly on

the . Note that there will be a one-day delay of according to the configuration in the deployment script.

recoveryManager GovernanceRouter
GovernanceRouter recoveryTimelock

Updater: Secondly, the updater can also apply this attack to the token bridge. Suppose the updater denies signing the token bridge update with the current bridge
implementation. In that case, it will lock the user's token without a new one minted in the destination domain. The token is locked because will
call to secure the funds needed to mint on the other side of the bridge.

•
BridgeRouter.sol:send

IERC20(_token).safeTransferFrom

:Exploit Scenario: loss of governor

1. The governor calls and transfers the governor from domain 1 to domain 2.GovernanceRouter.sol:transferGovernor

2. The updater refused to sign the update.

3. Now, the variable in the in domain 1 and 2 becomes .governor GovernanceRouter address(0)

1. Alice sends some tokens from domain A to domain B. The token is a native ERC20 of domain A.Exploit Scenario:



1. Those tokens were sent to and locked in the contract.BridgeRouter

2. The updater refuses to sign the signature or signs a wrong one.

3. BridgeRouter in domain B will not be called with the “transfer” message either due to no update.

4. Now, the tokens are locked, but no representation tokens are minted in the domain B.

A potential mitigation is to introduce slashing to the updater when not updating on time. With that, the updater must provide a signature, no matter valid or not. However, an

invalid signature can be proved either by or . Now, with a time limit, it patches the issue that the updater can choose not to do any

update without penalty.

Recommendation:

Home.sol:improperUpdate Nomad.sol:doubleUpdate

Note that this is a known issue by the Nomad dev team, and the solution proposed above is part of the plan to implement in the future. The current goal is to add it when they move toward the

“decentralized updater” phase, where there is an actual bond for slashing and some updater rotation mechanism in place.

From our point of view, we still suggest implementing and operating with a new fraud proving function to learn more operational experience during this centralized phase. Especially, the team

plans to start with “fake slashing” as in the current that removes the risk of such slashing harming the team when they're still on the bootstrapping

phase.

UpdaterManager.sol:slashUpdater

The Nomad team is aware of this issue. In the future, they will decentralize this role and will introduce the necessary mechanism for selecting and rotating the Updater. Until then, the

Updater is being operated by the Nomad team itself and other changes are considered out-of-scope.

Update:

QSP-39 Diverge In The Updater During Updater Rotation

Severity: Undetermined

AcknowledgedStatus:

, , , ,File(s) affected: Home.sol Replica.sol UpdaterManager.sol NomadBase.sol GovernanaceRouter.sol

To rotate the , the governor will need to send the command via the to call the function to update the

in and call the to update the one in the . However, the governance domain (with a valid governor) will have the updater rotated

immediately, while the other domains remain the old updater until the (30 min) pass. During this period, the signature required in the governance domain will be different

from the other domains.

Description: updater GovernanceRouter UpdaterManager.sol:setUpdater
updater Home Replica.sol:setUpdater Replica

optimisticSeconds

Relayer relies on the event on-chain to collect the signature of the updater when is called. The divergence of the updater across domains will cause the relayer to

fail to collect the signature that the replay can send to the replica, since the home and replica can require a different signature of the updater.

Update Home.sol:update

1. Assume two domains: domain 1 and domain 2 are running with the Nomad system. Governor is on the domain 1. It is running with .Exploit Scenario: updater1

1. command is called from the governor in domain 1 to change the updater to .setUpdater updater2

2. Since domain 1 is the primary governance domain, call will change the updater immediately to .
However, domain 2 will still use until 30 minutes pass and the message is processed.

GovernanceRouter.sol:executeGovernanceActions updater2

updater1

3. Now, the updates the root in the home contract of the domain 2.updater1

4. When the relayer tries to send to the replica of domain 1, the signature check will fail as the current updater of domain 1 is .updater2

This can be mitigated for the initial phase if the Nomad team takes maintenance time off to stop sending new signatures from the updater for a while. In the bootstrap phase,

the Nomad team will run the updater, and also, there is no plan to have actual bond slashing. It is reasonable to have off-chain coordination for the maintenance period, simply.

Recommendation:

In the future, if a maintenance phase is acceptable, then there can be some flag on the smart contracts to freeze the or function for a certain period whenever migrating to a

new updater.

update dispatch

Alternatively, if zero downtime is preferred, we should change the function to require two signatures during the migration phase. Both old and new updaters should sign and send the

signature during the migration phase.

update

The Nomad team stateUpdate:

The case of Fraud on the Governor domain, Fraud will be proven on the Governor Home, which will be FAILED. Thus, it will not be possible to send messages over the
normal governance channels anyway. This is the case for which the Recovery Manager role was originally designed.
* In the case of Fraud on the Governor domain, the Recovery Manager must be activated on all chains. The rotation of the Updater on Home and Replica contracts must be performed by the Recovery Manager, which is independent
of normal messaging channels.
* In the case of Fraud on other non-Governor domains, normal governance rails can be used to rotate the Updater without issue.

QSP-40 Initializer Not Disabled On Implementation Contract

Severity: Informational

AcknowledgedStatus:

File(s) affected: Proxied contracts

There are several contracts in the Nomad codebase that are deployed as proxies to enable easy upgrades. When proxies are created the deployment script calls the corresponding

method to initialize important functionality, like the owner of the contract. Further, calls to this method are not allowed, as it is protected by the modifier. However, this initialize

method is never called on the implementation contract itself. Therefore, an attacker could call the initializer method and take ownership of the implementation contract.

Description:

initializer

Consider calling the method on the constructor of the implementation contracts to ensure that they cannot be taken over by an attacker (Check

the second "Caution" callout in the ). We recommend doing so to prevent any unexpected behavior.

Recommendation: _disableInitializers
OpenZeppelin Docs

The team acknowledged the issue and stated the followingUpdate:

Our upgrade structure is not controlled by the implementation. Taking control of the implementation cannot perform upgrades to malicious implementations.
We do not perform any delegateCalls in any of our implementations; there are no owner-provided values which could cause the implementation contract to self-destruct and threaten locking funds
even if the implementation contract did self-destruct, funds would not be locked.
Our upgrade structure - the UpgradeBeacon - would enable us to upgrade to a new implementation anyway.

Automated Analyses

Slither

Slither is run against all the contracts and found 19 issues , the majority of the issues alerted by slither are false positive.

Code Documentation

https://docs.openzeppelin.com/contracts/4.x/api/proxy#Initializable


Unclear on the recommendation of how should dapp on top of the Nomad message system set their own and contracts. From the
discussion with the team, the default setup in the team's operational scenario is that different dapp will share the same . Still, they can set their own

connected to their to enable their trusted watcher to unenroll the router from the replica. There should be a document on how to set
up this.

• Replica XAppConnectionManager

Replica

XAppConnectionManager Router

Unclear about the role of used in the . Also, the documents state that "If there is fraud on the Nomad Home contract on the
governor chain, this is currently a "catastrophic failure state" — no further governance actions can be rolled out to remote chains; we must create a plan to recover the
system in this case." in the section of failure state ( ). The statement seems unrelated to the , but it might confuse the audience because the naming
is the same here.

• recoveryManager GovernanceRouter

link recoveryManger

Should warn the user that the bridge only supports standard ERC20 tokens without taking a fee on transfer or will rebase the amount.•

Lack of documents or specs on the and features of the bridge.• enrollCustom migrate

Lack of documents or specs on the fast transfer feature of the bridge.•

In package , the code document for the function has an unfinished sentence
.

• contracts-bridge TokenRegistry.sol:_defaultDetails Sets name to "nomad.

[domain].[id]" and symbol to

Lack of documents on the use cases of .• zodiac-module-gnomad

: : The param is not sorted in the same order as in the event. Consider sorting them in the same way.• Home.sol L57 messageHash

: - The documentation is wrong. The word “it” is not needed.• Home.sol L139

: - The documentation for the parameter states that it is the message that failed to process. This is incorrect.• Replica.sol L67 messageHash

: - Add a comment describing why the was set to 1 (probably to always pre-approve the given root).• Replica.sol L122 confirmAt

: . typo "_potentialReplcia".• XAppConnectionClient L59

: - The comment is incomplete and not clear. “Initialize the token separately from the … “• TokenRegistry.sol L344

: - The comment is incomplete - “and symbol to…“• TokenRegistry.sol L364

: - Typo "pf".• TokenRegistry.sol L366

: - Typo "tje".• TokenRegistry.sol L155

Adherence to Best Practices

The method in the contract is public even though it's only supposed to be called only once. The call inside the method is
preventing it from being called again, but this looks like an unnecessary risk (future refactorings could remove this call). If the the method will only be called by
the constructor mark it private. Otherwise, leave it as public but explicitly add the modifier.

• setUp GnomadModule __Ownable_init

setUp

initializer

- The method in is quite confusing. It’s using Solidity’s low-level to call the fallback function. It
would more readable and less error-prone to implement a method in the contract and just call it from

as done in .

• UpgradeBeaconProxy.sol _getImplementation L164 staticcall

getImplementation() UpgradeBeacon

UpgradeBeaconProxy.sol OpenZeppelin

The does not follow the standard. Therefore, EtherScan and other tools will not realize that this contract is dealing with a proxy.
Determine if this is important and if so add support for EIP-1967 (Consider OpenZeppelin's implementation).

• UpgradeBeaconProxy EIP-1967

BeaconProxy

It's not clear why the constructor of the and the are marked as . If those constructors are never meant to receive
remove that keyword.

• UpgradeBeacon UpdaterManager payable Ether

The contract is never meant to be used on its own. Therefore, mark it as .• Version0.sol abstract

The comment in : is not needed as the next code block is not empty.• solhint Replica.sol L97

The modifier on the is never used (the only modifiers used are defined in or
). Consider removing it if not needed.

• onlyReplica XAppConnectionManager.sol XAppConnectionClient.sol

GovernanceRouter.sol

The contract defined in the file can never be used on its own. Therefore, consider marking it as .• ERC20 OZERC20.sol abstract

The contract is making an assebly code on to determine if a given token is a contract. Consider replacing this call with OpenZeppelin's
or . Both of these options rely on , but are less error prone.

• TokenRegistry L293

Address.isContract() token.code.length > 0 extcodesize

The method in the contract is returning if the given token address is not a contract. This is misleading, as the caller might
assume that the token exists and represents a remote address. Instead, consider throwing an exception if the address is not a contract.

• isLocalOrigin TokenRegistry false

The method in the contract is never used. Please remove it if it's not necessary.• evmId BridgeMessage.sol

Remove and from the inheritance of and remove the file and under . They provided
limited value by wrapping a few and functions. However, both variable and are still directly accessed in the code of . We can call those
now without the wrapping calls.

• MerkleTreeManager QueueManager Home Merkle.sol Queue.sol contracts/

tree queue tree queue Home

Consider merging with the for simplicity.• XAppConnectionClient Router

In ( ) , it should use the setter functions to set values: , ,• GnomadModule.sol:setUp zodiac-module-gnomad Module.setAvatar Module.setTarget

GnomadModule.setController

Lower down unnecessary function visibility from to :• internal private

contracts-core

Home.sol:_destinationAndNonce•

Home.sol:_setUpdaterManager•

XAppConnectionManager.sol:_recoverWatcherFromSig•

•

contracts-bridge

BridgeRouter.sol:_originAndNonce•

BridgeRouter.sol:_applyPreFillFee•

BridgeRouter.sol:_dust•

BridgeRouter.sol:_handleTransfer•

•

contracts-router

XAppConnectionClient.sol:_isReplica•

•

https://docs.nomad.xyz/dev/governance.html#failure-states
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/3bdf4bfd29b145288ec741bef259a384007ed5cf/contracts/proxy/beacon/BeaconProxy.sol#L46


•

Router.sol:_isRemoteRouter•

•

zodiac-module-gnomad

: change the visibility or just remove this function and directly call the function in the function.GnomadModule.sol:executeTransaction exec handle•

•

Lower down function visibility from to :• public external

:contracts-bridge

TokenRegistry.sol:isLocalOrigin•

•

There is a magic value for the "type flag" for . Instead of , please provide a readable type name instead of passing .• 0 TypedMemView <:message>.ref(0) 0

:contracts-core

Replica.sol:L188•

governance/GovernanceMessage.sol:L96•

governance/GovernanceMessage.sol:108•

governance/GovernanceMessage.sol:159•

governance/GovernanceRouter.sol:233•

libs/TypeCasts.sol:L15•

•

:contracts-bridge

BridgeMessage.sol:L148•

BridgeMessage.sol:L178•

BridgeMessage.sol:L227•

BridgeRouter.sol:L114•

BridgeRouter.sol:L217•

•

Remove unused functions:•

:contracts-core

libs/TypeCasts.sol:coerceBytes32•

libs/TypeCasts.sol:coerceString•

libs/Queue.sol:dequeue(Queue storage _q, uint256 _number)•

governance/GovernanceMessage.sol:typeAssert•

governance/GovernanceMessage.sol:isBatch•

governance/GovernanceMessage.sol:isTransferGovernor•

governance/GovernanceMessage.sol:messageType•

governance/GovernanceMessage.sol:mustBeBatch•

governance/GovernanceRouter.sol:onlyInRecovery•

•

contracts-bridge

BridgeMessage.sol:formatTokenId(BridgeMessage.TokenId)•

BridgeRouter._localDomain•

•

contracts-router

XAppConnectionClient.sol:_home•

XAppConnectionClient.sol:_isReplica•

Router.sol:_isRemoteRouter•

•

Remove unused variables•

contracts-core

governance/GovernanceMessage.sol:BATCH_PREFIX_ITEMS•

governance/GovernanceMessage.sol:CALLS_PREFIX_LEN•

governance/GovernanceMessage.sol:CALL_DATA_OFFSET•

•

contracts-bridge

BridgeMessage.sol:IDENTIFIER_LEN•

•

Test Results

Test Suite Results

forge test

YN0000: [@nomad-xyz/contracts-bridge]: Process started
➤ YN0000: [@nomad-xyz/contracts-core]: Process started
➤ YN0000: [@nomad-xyz/contracts-router]: Process started



➤ YN0000: [@nomad-xyz/multi-provider]: Process started
➤ YN0000: [@nomad-xyz/sdk]: Process started
➤ YN0000: [@nomad-xyz/multi-provider]:
➤ YN0000: [@nomad-xyz/multi-provider]:
➤ YN0000: [@nomad-xyz/multi-provider]:   multi-provider
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ returns an array of domains
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ returns array of domain numbers
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ returns an array of domain names
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ returns an array of missing providers
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ returns domain for given nameOrDomain
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ returns name for given nameOrDomain
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ resolveDomainName errors if domain is not found
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ returns whether a given domain is registered
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ fetches a domain, given a name or domain ID
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ mustGetDomain errors if a given domain is not registered
➤ YN0000: [@nomad-xyz/multi-provider]:     - registerSigner errors if no provider
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ registers provider
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ gets registered provider
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ mustGetProvider errors if provider is not registered for given nameOrDomain
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ registers signer
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ gets signers
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ gets connection
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ unregisters signer
➤ YN0000: [@nomad-xyz/multi-provider]:     - gets connection
➤ YN0000: [@nomad-xyz/multi-provider]:     - gets signer address
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ mustGetSigner errors if signer is not registered for given nameOrDomain
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ clears all signers
➤ YN0000: [@nomad-xyz/multi-provider]:     - registers Wallet Signer
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ instantiates Contracts class with appropriate args
➤ YN0000: [@nomad-xyz/multi-provider]:     - TODO: resolveDomainName errors
➤ YN0000: [@nomad-xyz/multi-provider]:
➤ YN0000: [@nomad-xyz/multi-provider]:   multi-provider utils
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ domain for given chain ID
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ gets hex domain from string
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ converts to a 32-byte cannonized ID
➤ YN0000: [@nomad-xyz/multi-provider]:     ✔ converts Nomad Id to emv address
➤ YN0000: [@nomad-xyz/multi-provider]:     - delays x milliseconds
➤ YN0000: [@nomad-xyz/multi-provider]:
➤ YN0000: [@nomad-xyz/multi-provider]:
➤ YN0000: [@nomad-xyz/multi-provider]:   24 passing (23ms)
➤ YN0000: [@nomad-xyz/multi-provider]:   6 pending
➤ YN0000: [@nomad-xyz/multi-provider]:
➤ YN0000: [@nomad-xyz/multi-provider]: Process exited (exit code 0), completed in 3s 24ms
➤ YN0000: [@nomad-xyz/sdk-bridge]: Process started
➤ YN0000: [@nomad-xyz/sdk]:
➤ YN0000: [@nomad-xyz/sdk]:
➤ YN0000: [@nomad-xyz/sdk]:   sdk
➤ YN0000: [@nomad-xyz/sdk]:     NomadContext
➤ YN0000: [@nomad-xyz/sdk]:       ✔ Is properly instantiated from a NomadConfig (54ms)
➤ YN0000: [@nomad-xyz/sdk]:       - fails if given bad rpc provider string
➤ YN0000: [@nomad-xyz/sdk]:       ✔ gets replica by name or domain
➤ YN0000: [@nomad-xyz/sdk]:       ✔ maintains connection when registering and unregistering signers
➤ YN0000: [@nomad-xyz/sdk]:     CoreContracts
➤ YN0000: [@nomad-xyz/sdk]:       - gets governor and stores in class state
➤ YN0000: [@nomad-xyz/sdk]:
➤ YN0000: [@nomad-xyz/sdk]:
➤ YN0000: [@nomad-xyz/sdk]:   3 passing (85ms)
➤ YN0000: [@nomad-xyz/sdk]:   2 pending
➤ YN0000: [@nomad-xyz/sdk]:
➤ YN0000: [@nomad-xyz/sdk]: Process exited (exit code 0), completed in 6s 776ms
➤ YN0000: [@nomad-xyz/sdk-govern]: Process started
➤ YN0000: [@nomad-xyz/sdk-bridge]:
➤ YN0000: [@nomad-xyz/sdk-bridge]:
➤ YN0000: [@nomad-xyz/sdk-bridge]:   sdk-bridge
➤ YN0000: [@nomad-xyz/sdk-bridge]:     BridgeContext
➤ YN0000: [@nomad-xyz/sdk-bridge]:       ✔ Is properly instantiated from a NomadConfig and then NomadContext
➤ YN0000: [@nomad-xyz/sdk-bridge]:     Nomad events
➤ YN0000: [@nomad-xyz/sdk-bridge]:       - sends bridge transaction
➤ YN0000: [@nomad-xyz/sdk-bridge]:
➤ YN0000: [@nomad-xyz/sdk-bridge]:
➤ YN0000: [@nomad-xyz/sdk-bridge]:   1 passing (79ms)
➤ YN0000: [@nomad-xyz/sdk-bridge]:   1 pending
➤ YN0000: [@nomad-xyz/sdk-bridge]:
➤ YN0000: [@nomad-xyz/sdk-bridge]: Process exited (exit code 0), completed in 6s 671ms
➤ YN0000: [@nomad-xyz/contracts-core]: Compiling 47 files with 0.7.6
➤ YN0000: [@nomad-xyz/contracts-core]: Solc 0.7.6 finished in 4.80s
➤ YN0000: [@nomad-xyz/contracts-core]: Compiler run successful (with warnings)
➤ YN0000: [@nomad-xyz/contracts-core]: warning[2462]: node_modules/@openzeppelin/contracts/access/Ownable.sol:26:5: Warning: Visibility for constructor is ignored. If you want the contract to be non-deployable, making it
"abstract" is sufficient.
➤ YN0000: [@nomad-xyz/contracts-core]:     constructor () internal {
➤ YN0000: [@nomad-xyz/contracts-core]:     ^ (Relevant source part starts here and spans across multiple lines).
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: warning[2072]: packages/contracts-core/contracts/test/Home.t.sol:83:9: Warning: Unused local variable.
➤ YN0000: [@nomad-xyz/contracts-core]:         bytes memory message = Message.formatMessage(
➤ YN0000: [@nomad-xyz/contracts-core]:         ^------------------^
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: warning[2072]: packages/contracts-core/contracts/test/utils/MerkleTest.sol:22:9: Warning: Unused local variable.
➤ YN0000: [@nomad-xyz/contracts-core]:         bytes32 hash = keccak256(message);
➤ YN0000: [@nomad-xyz/contracts-core]:         ^----------^
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: warning[2072]: packages/contracts-core/contracts/test/Replica.t.sol:232:13: Warning: Unused local variable.
➤ YN0000: [@nomad-xyz/contracts-core]:             bytes32 leaf,
➤ YN0000: [@nomad-xyz/contracts-core]:             ^----------^
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: warning[2072]: packages/contracts-core/contracts/test/Replica.t.sol:533:13: Warning: Unused local variable.
➤ YN0000: [@nomad-xyz/contracts-core]:             bytes32 leaf,
➤ YN0000: [@nomad-xyz/contracts-core]:             ^----------^
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: warning[2072]: packages/contracts-core/contracts/test/Replica.t.sol:534:13: Warning: Unused local variable.
➤ YN0000: [@nomad-xyz/contracts-core]:             uint256 index,
➤ YN0000: [@nomad-xyz/contracts-core]:             ^-----------^
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: warning[2072]: packages/contracts-core/contracts/test/Replica.t.sol:535:13: Warning: Unused local variable.
➤ YN0000: [@nomad-xyz/contracts-core]:             bytes32[32] memory proof
➤ YN0000: [@nomad-xyz/contracts-core]:             ^----------------------^
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: Running 6 tests for packages/contracts-core/contracts/test/NomadBase.t.sol:NomadBaseTest
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptUpdaterSignature() (gas: 27469)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_failInitializeTwice() (gas: 13452)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_homeDomainHash() (gas: 10078)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_ownerIsContractCreator() (gas: 7631)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectNonUpdaterSignature() (gas: 27434)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_stateIsActiveAfterInit() (gas: 7679)
➤ YN0000: [@nomad-xyz/contracts-core]: Test result: ok. 6 passed; 0 failed; finished in 1.12s
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: Running 8 tests for packages/contracts-core/contracts/test/Home.t.sol:HomeTest
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_committedRoot() (gas: 13674)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_dispatchRejectBigMessage() (gas: 29181)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_homeDomain() (gas: 8010)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_improperUpdate() (gas: 46103)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_nonUpdaterManagerCannotSetUpdater() (gas: 11839)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_onlyUpdaterManagerSetUpdater() (gas: 19666)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_succesfulDispatch() (gas: 216412)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_successfulDispatchAndUpdate() (gas: 228379)
➤ YN0000: [@nomad-xyz/contracts-core]: Test result: ok. 8 passed; 0 failed; finished in 1.13s
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: Running 24 tests for packages/contracts-core/contracts/test/Replica.t.sol:ReplicaTest
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptLeafCorrectProof() (gas: 141654)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptReplicaUpdate() (gas: 66564)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootLegacyRejectStatus() (gas: 10263)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootLegacySuccess() (gas: 6361)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootRejectNotCommited() (gas: 7941)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootRejectNotTimedOut() (gas: 96705)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootSuccess() (gas: 9985)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageEmptyAddress() (gas: 46553)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers1() (gas: 48959)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers2() (gas: 49086)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers3() (gas: 49018)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers4() (gas: 48958)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyWrongDestination() (gas: 68756)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessUnprovenMessage() (gas: 48486)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_processLegacyProvenMessageReturnZeroHandler() (gas: 55453)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_processProvenMessage() (gas: 127782)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_proveAndProcess() (gas: 130139)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectLeafWrongProof() (gas: 126638)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectReplicaNonCurrentUpdate() (gas: 17008)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectReplicaUpdateInvalidSig() (gas: 27613)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_setConfirmationOnlyOwner() (gas: 39727)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_setOptimisticTimeoutOnlyOwner() (gas: 18541)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_setUpdaterOnlyOwner() (gas: 25159)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_updateProveAndProcessMessage() (gas: 149999)
➤ YN0000: [@nomad-xyz/contracts-core]: Test result: ok. 24 passed; 0 failed; finished in 1.13s
➤ YN0000: [@nomad-xyz/contracts-core]: No files changed, compilation skipped
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: Running 8 tests for packages/contracts-core/contracts/test/Home.t.sol:HomeTest
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_committedRoot() (gas: 13674)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_dispatchRejectBigMessage() (gas: 29181)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_homeDomain() (gas: 8010)



➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_improperUpdate() (gas: 46103)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_nonUpdaterManagerCannotSetUpdater() (gas: 11839)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_onlyUpdaterManagerSetUpdater() (gas: 19666)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_succesfulDispatch() (gas: 216412)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_successfulDispatchAndUpdate() (gas: 228379)
➤ YN0000: [@nomad-xyz/contracts-core]: Test result: ok. 8 passed; 0 failed; finished in 822.77ms
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: Running 24 tests for packages/contracts-core/contracts/test/Replica.t.sol:ReplicaTest
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptLeafCorrectProof() (gas: 141654)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptReplicaUpdate() (gas: 66564)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootLegacyRejectStatus() (gas: 10263)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootLegacySuccess() (gas: 6361)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootRejectNotCommited() (gas: 7941)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootRejectNotTimedOut() (gas: 96705)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptableRootSuccess() (gas: 9985)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageEmptyAddress() (gas: 46553)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers1() (gas: 48959)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers2() (gas: 49086)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers3() (gas: 49018)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyProvenMessageRevertingHandlers4() (gas: 48958)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessLegacyWrongDestination() (gas: 68756)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_notProcessUnprovenMessage() (gas: 48486)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_processLegacyProvenMessageReturnZeroHandler() (gas: 55453)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_processProvenMessage() (gas: 127782)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_proveAndProcess() (gas: 130139)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectLeafWrongProof() (gas: 126638)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectReplicaNonCurrentUpdate() (gas: 17008)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectReplicaUpdateInvalidSig() (gas: 27613)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_setConfirmationOnlyOwner() (gas: 39727)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_setOptimisticTimeoutOnlyOwner() (gas: 18541)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_setUpdaterOnlyOwner() (gas: 25159)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_updateProveAndProcessMessage() (gas: 149999)
➤ YN0000: [@nomad-xyz/contracts-core]: Test result: ok. 24 passed; 0 failed; finished in 822.82ms
➤ YN0000: [@nomad-xyz/contracts-core]:
➤ YN0000: [@nomad-xyz/contracts-core]: Running 6 tests for packages/contracts-core/contracts/test/NomadBase.t.sol:NomadBaseTest
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_acceptUpdaterSignature() (gas: 27469)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_failInitializeTwice() (gas: 13452)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_homeDomainHash() (gas: 10078)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_ownerIsContractCreator() (gas: 7631)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_rejectNonUpdaterSignature() (gas: 27434)
➤ YN0000: [@nomad-xyz/contracts-core]: [PASS] test_stateIsActiveAfterInit() (gas: 7679)
➤ YN0000: [@nomad-xyz/contracts-core]: Test result: ok. 6 passed; 0 failed; finished in 829.94ms
➤ YN0000: [@nomad-xyz/contracts-core]: Process exited (exit code 0), completed in 10s 720ms
➤ YN0000: [@nomad-xyz/contracts-router]: Generating typings for: 25 artifacts in dir: ./src for target: ethers-v5
➤ YN0000: [@nomad-xyz/contracts-router]: Successfully generated 31 typings!
➤ YN0000: [@nomad-xyz/contracts-router]: Compiled 25 Solidity files successfully
➤ YN0000: [@nomad-xyz/contracts-router]: ·-----------------------|---------------------------|----------------|-----------------------------·
➤ YN0000: [@nomad-xyz/contracts-router]: |  Solc version: 0.7.6  ·  Optimizer enabled: true  ·  Runs: 999999  ·  Block limit: 30000000 gas  │
➤ YN0000: [@nomad-xyz/contracts-router]: ························|···························|················|······························
➤ YN0000: [@nomad-xyz/contracts-router]: |  Methods                                                                                         │
➤ YN0000: [@nomad-xyz/contracts-router]: ·············|··········|·············|·············|················|·············|················
➤ YN0000: [@nomad-xyz/contracts-router]: |  Contract  ·  Method  ·  Min        ·  Max        ·  Avg           ·  # calls    ·  usd (avg)    │
➤ YN0000: [@nomad-xyz/contracts-router]: ·------------|----------|-------------|-------------|----------------|-------------|---------------·
➤ YN0000: [@nomad-xyz/contracts-router]:
➤ YN0000: [@nomad-xyz/contracts-router]:   0 passing (89ms)
➤ YN0000: [@nomad-xyz/contracts-router]:
➤ YN0000: [@nomad-xyz/contracts-router]: @openzeppelin/contracts/access/Ownable.sol:26:5: Warning: Visibility for constructor is ignored. If you want the contract to be non-deployable, making it "abstract" is sufficient.
➤ YN0000: [@nomad-xyz/contracts-router]:     constructor () internal {
➤ YN0000: [@nomad-xyz/contracts-router]:     ^ (Relevant source part starts here and spans across multiple lines).
➤ YN0000: [@nomad-xyz/contracts-router]:
➤ YN0000: [@nomad-xyz/contracts-router]: Process exited (exit code 0), completed in 10s 735ms
➤ YN0000: [@nomad-xyz/sdk-govern]:
➤ YN0000: [@nomad-xyz/sdk-govern]:
➤ YN0000: [@nomad-xyz/sdk-govern]:   sdk-govern
➤ YN0000: [@nomad-xyz/sdk-govern]:     - TODO
➤ YN0000: [@nomad-xyz/sdk-govern]:
➤ YN0000: [@nomad-xyz/sdk-govern]:
➤ YN0000: [@nomad-xyz/sdk-govern]:   0 passing (1ms)
➤ YN0000: [@nomad-xyz/sdk-govern]:   1 pending
➤ YN0000: [@nomad-xyz/sdk-govern]:
➤ YN0000: [@nomad-xyz/sdk-govern]: Process exited (exit code 0), completed in 4s 339ms
➤ YN0000: [@nomad-xyz/contracts-bridge]: Generating typings for: 45 artifacts in dir: ./src for target: ethers-v5
➤ YN0000: [@nomad-xyz/contracts-bridge]: Successfully generated 63 typings!
➤ YN0000: [@nomad-xyz/contracts-bridge]: Compiled 44 Solidity files successfully
➤ YN0000: [@nomad-xyz/contracts-bridge]: ·-----------------------|---------------------------|----------------|-----------------------------·
➤ YN0000: [@nomad-xyz/contracts-bridge]: |  Solc version: 0.7.6  ·  Optimizer enabled: true  ·  Runs: 999999  ·  Block limit: 30000000 gas  │
➤ YN0000: [@nomad-xyz/contracts-bridge]: ························|···························|················|······························
➤ YN0000: [@nomad-xyz/contracts-bridge]: |  Methods                                                                                         │
➤ YN0000: [@nomad-xyz/contracts-bridge]: ·············|··········|·············|·············|················|·············|················
➤ YN0000: [@nomad-xyz/contracts-bridge]: |  Contract  ·  Method  ·  Min        ·  Max        ·  Avg           ·  # calls    ·  usd (avg)    │
➤ YN0000: [@nomad-xyz/contracts-bridge]: ·------------|----------|-------------|-------------|----------------|-------------|---------------·
➤ YN0000: [@nomad-xyz/contracts-bridge]:
➤ YN0000: [@nomad-xyz/contracts-bridge]:   0 passing (169ms)
➤ YN0000: [@nomad-xyz/contracts-bridge]:
➤ YN0000: [@nomad-xyz/contracts-bridge]: @openzeppelin/contracts/access/Ownable.sol:26:5: Warning: Visibility for constructor is ignored. If you want the contract to be non-deployable, making it "abstract" is sufficient.
➤ YN0000: [@nomad-xyz/contracts-bridge]:     constructor () internal {
➤ YN0000: [@nomad-xyz/contracts-bridge]:     ^ (Relevant source part starts here and spans across multiple lines).
➤ YN0000: [@nomad-xyz/contracts-bridge]:
➤ YN0000: [@nomad-xyz/contracts-bridge]: contracts/BridgeRouter.sol:324:13: Warning: Failure condition of 'send' ignored. Consider using 'transfer' instead.
➤ YN0000: [@nomad-xyz/contracts-bridge]:             payable(_recipient).send(DUST_AMOUNT);
➤ YN0000: [@nomad-xyz/contracts-bridge]:             ^-----------------------------------^
➤ YN0000: [@nomad-xyz/contracts-bridge]:
➤ YN0000: [@nomad-xyz/contracts-bridge]: Process exited (exit code 0), completed in 11s 925ms
➤ YN0000: Done in 11s 927ms

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

20e407301c6bf1c41e6f706fee763c3ec58617338a4ca2df6f3cae22a37ea5a9 ./Nomad/zodiac/contracts/GnomadModule.sol

8f98be62dc7d0ac20685740d920a9c78753888b39c658de7eacaa202b61dd2f0 ./Nomad/zodiac/contracts/test/Imports.sol

3bf9aa81de72cd8e4522b5ed546bab4dd63f3a7b7502e62489d2f44f021e3aab ./Nomad/zodiac/contracts/test/Mock.sol

597af176ac262ad9e23eaf0d2306d275d50640ecc7aa8fe1c381524de04b1638 ./Nomad/zodiac/contracts/test/MockConnectionManager.sol

9040a0d30df69a7a266e2e1706039aa518b6ec124f697390b8a3edf50a2fdef4 ./Nomad/zodiac/contracts/test/TestAvatar.sol

203abf1a6bd49f0285ee9e3df54b22f7c51ccee3eb271a0297a7acb3e79a10df ./Nomad/zodiac/contracts/test/TestFactory.sol

eb0167b1c14cef3031e76e798268da52fd19d43c30331f502f95bc5d5ad252f3 ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/Context.sol

60c3bb830c82a94e21fc9e4ece1400282ba46d1244afd251404735cbb6e72825 ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/ERC20.sol

6a7b7a3f5b0f0011b42bb3ae925ada6b06a24633c63b38d8bce6234a7313f034 ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/IERC20.sol

8e51e13ae9e0df1dd2336d8f7a20620bc3551e1f5719af4eabe48938684c127a ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/Token.sol

b6b3e1a64bb480a8315a55946678c8e290412f5e3ed817f8bae9e819d86f8960 ./Nomad/monrepo/packages/contracts-router/contracts/Router.sol

018f5299b11762b2d2bdb3274fe11f6ec9dbfa8295f65fce5e7d97b9350f8f18 ./Nomad/monrepo/packages/contracts-router/contracts/XAppConnectionClient.sol

d00a117e25bc8ba1071845d331028a3c58cb5dd5d1e42a2f8571c425aef2196d ./Nomad/monrepo/packages/contracts-core/contracts/Home.sol

d0f40e08a0ed29e6fb3e208a412a17f2c07db17a558dac7091c61686088ed5c3 ./Nomad/monrepo/packages/contracts-core/contracts/Merkle.sol

de15ff842258e7e22af1bfd2183a86f3d183bd6f416040c290e7c2f4966718a9 ./Nomad/monrepo/packages/contracts-core/contracts/NomadBase.sol

7fb0fd531a9f2283ef1cbd3c24e2d0fa3feb8b1ddc928e19f53e4544fe031a41 ./Nomad/monrepo/packages/contracts-core/contracts/Queue.sol



4b9de559b63b90a12907be0931e8769ee406642312574e52d3349a71355e1831 ./Nomad/monrepo/packages/contracts-core/contracts/Replica.sol

d1ad5ebafc193db8f0723b9e38b0c9c35a89c3739cab44c6fa88fd2247b0477f ./Nomad/monrepo/packages/contracts-core/contracts/UpdaterManager.sol

e2b284e9446b30386024b9aa0e1500488a3fc7d0e8aa747a45aa4fe6590263a3 ./Nomad/monrepo/packages/contracts-core/contracts/Version0.sol

f6ef802dd25c3abed7fe87c00c7692e286cba4b608ad2eadb4dd65733ee81bb1 ./Nomad/monrepo/packages/contracts-core/contracts/XAppConnectionManager.sol

1c0e101260c2549940880292443e755989cf8c61b871bc66b6626b247503965d ./Nomad/monrepo/packages/contracts-core/contracts/upgrade/UpgradeBeacon.sol

832ffa316e24d689c19d7023748a267712d84d3cf6a7e3f90289be808cebad15 ./Nomad/monrepo/packages/contracts-
core/contracts/upgrade/UpgradeBeaconController.sol

6bf68a5b556dac76487fb922a5c5ba1a373e67f57368dce683e8ce07619d79d8 ./Nomad/monrepo/packages/contracts-
core/contracts/upgrade/UpgradeBeaconProxy.sol

1d8f79d86f912ed20c44266a7296efb01ebe466af521d2bbd4b3beb990567dd3 ./Nomad/monrepo/packages/contracts-core/contracts/test/MysteryMath.sol

4ea99fa2bf1e686dd296d71e5c358c7b306ec926b9fcfcf2b50214058a242adf ./Nomad/monrepo/packages/contracts-core/contracts/test/MysteryMathV1.sol

47adc30c71b54462030de2e089c102ac27fb0de682f4921bd8f6559499abff38 ./Nomad/monrepo/packages/contracts-core/contracts/test/MysteryMathV2.sol

7f6beb01d945d5d32901f21ad8f52ba8dbe932e10d68e6580a2e3e7eac8e4503 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestCommon.sol

f30ca27e325e08cfec07a382dc2cb41512c4d1832906c4d390ae59e5911e969f ./Nomad/monrepo/packages/contracts-
core/contracts/test/TestGovernanceMessage.sol

2a93462dde81dc77165785e9c7a780e14ba44d93ebbcb0ae9ec545eb507ddb6e ./Nomad/monrepo/packages/contracts-
core/contracts/test/TestGovernanceRouter.sol

f2ee9ecb9a7717f6c59283b076fe779450092118015915e4edc6e7935b7095f3 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestHome.sol

668a6c81374b08925970d8ed2c09b15f044c56c51b45e33a7a2d98f5c93605f0 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestMerkle.sol

0cea4931ae64899e37f4282343555240ebd51a77c24dd6942903d75413219276 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestMessage.sol

8192727c23fb18126efbe62c3901164ac468ff8d98b3cabdfedb74ec7345540e ./Nomad/monrepo/packages/contracts-core/contracts/test/TestQueue.sol

63f5b9ef69d92b9b8fd50d08040ea95cc6fcaee3dc1f21a38b4fdfbc80404b33 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestRecipient.sol

87c75a1dfd272782de15bd380bc650c6fc05aef8f5621f770eee2ede492a7bb0 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestReplica.sol

7fe0ca4b7ac0666f1625ef65159a338f2943cabe7b6668e7f4844d30081eee04 ./Nomad/monrepo/packages/contracts-
core/contracts/test/TestXAppConnectionManager.sol

32dcd82fa0e32e3745eca4f9e39458eee1fb0683d22d3dc6b6b99638a3aabcb2 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient1.sol

df57b1d5fc8f518c0d13ad72894445b8bf4efc45c13c540289aed9055d911a99 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient2.sol

a252945415af04654838bdc3959c979219965eb31ab88016cf7c624a5e4b0e4c ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient3.sol

3ba8e0c4f42fa62321b94b58756488851b5c365ed4722ca306d4bc265b1385c4 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient4.sol

e9d43d25bc487b1b8a5335adeec84197bcf16d0910be6f30740333bd258a98f4 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient5.sol

2ebbec7b7fc89f2d49dc473cbedf6a7f1f54abd359fc3f78317062497b17e636 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient6.sol

63b9010a994b096ea2d787b38921b0f995543b15f19f07a6c33e5c1a90eafeaf ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipientHandle.sol

ba936cbe96f54b719623b6c95a2f069356fe14e8061196d9f02884ddf1deffc8 ./Nomad/monrepo/packages/contracts-core/contracts/libs/Merkle.sol

e2262f0517d1d69c5d200b3ac6998134ca24ff4737b89e05149955459f650c67 ./Nomad/monrepo/packages/contracts-core/contracts/libs/Message.sol

25bf0b13e085ab095235ff25bf842b5b2b03d0992afc4aec2cec8d3ae2403b60 ./Nomad/monrepo/packages/contracts-core/contracts/libs/Queue.sol

b82274ebdf155c9cd1750a64b864a54c17c79cf59188b7c58e33f3fe2c09e21c ./Nomad/monrepo/packages/contracts-core/contracts/libs/TypeCasts.sol

40479a0d3596ddcd00fa2ff6e24cee120617e784bca4ec4413e461e383ae89e4 ./Nomad/monrepo/packages/contracts-
core/contracts/interfaces/IMessageRecipient.sol

7958f62ba4adb2d6367d94a8736585189e7b70b7ff5794fc22770a267c35b9a1 ./Nomad/monrepo/packages/contracts-
core/contracts/interfaces/IUpdaterManager.sol

a165f6a668b15714bccb4b495372ddf87d68cc5d21f8481cb27475cfddca4620 ./Nomad/monrepo/packages/contracts-
core/contracts/governance/GovernanceMessage.sol

7d80a2fd57a7dd4bf28b858b8552c355a32629dcb8a156ddcee8b7f2b4bec2c8 ./Nomad/monrepo/packages/contracts-
core/contracts/governance/GovernanceRouter.sol

a06c0a999cf1d52ef4afe30a315241c33c3d711c164897e1c94fd78e86d7502c ./Nomad/monrepo/packages/contracts-bridge/contracts/BridgeMessage.sol

70bfd5e9872f2d5c69e97d9bc00c487460a1643000888aeef8ae5ecd5a49ee59 ./Nomad/monrepo/packages/contracts-bridge/contracts/BridgeRouter.sol

471e85f1fb02b5fb766bee82ff222cffd6d1c520e4bf477b07a653633a43122a ./Nomad/monrepo/packages/contracts-bridge/contracts/BridgeToken.sol

8e5faf5a8fb075aec05853c8c40e1cc258de4adeb4b85f9edd646a6bed1c5c45 ./Nomad/monrepo/packages/contracts-bridge/contracts/Encoding.sol

fd1783d494ee70cff5b0015e6b743792b35d92d4516e23199a07f4a7545a3cbd ./Nomad/monrepo/packages/contracts-bridge/contracts/ETHHelper.sol

a730af6c84a6774f449fd2516b0be0c40cb5efd43f33d803c8c5530bc54d82a1 ./Nomad/monrepo/packages/contracts-bridge/contracts/TokenRegistry.sol

c9f0d8deffff61d9f6268b0d198f9aa64c687d1659dc38b134c46c9ee5e43a93 ./Nomad/monrepo/packages/contracts-bridge/contracts/vendored/OZERC20.sol

cba19a6b53ed08db707391b2998e8cdcb7141357738d37a677e51bf07e9eba4d ./Nomad/monrepo/packages/contracts-bridge/contracts/test/MockCore.sol

eae58a9770879c46b0fac491d837e2def75f6646faa98e93639b2d7a9ab65dec ./Nomad/monrepo/packages/contracts-bridge/contracts/test/MockWeth.sol

dcf6ab9f802fa128422be1a18798478ae81f2f552a17888d49a596f2a3aeb1e9 ./Nomad/monrepo/packages/contracts-
bridge/contracts/test/TestBridgeMessage.sol

abb23624cc9441d042cd697d263a1cd96ef5109a9ea05deb2e8366c5bb8448e7 ./Nomad/monrepo/packages/contracts-bridge/contracts/test/TestBridgeRouter.sol

ea8d6853a57b3b86065bdf7a59dd271922d9c25e296c5cac00e7b75ef0414e0b ./Nomad/monrepo/packages/contracts-bridge/contracts/test/TestEncoding.sol

e70586fb593fd2da4827c1e4d0171c213d83af2f87761fdf53dbc51333860e80 ./Nomad/monrepo/packages/contracts-
bridge/contracts/interfaces/IBridgeToken.sol

28ff236d43f9be5f244554759ce1f710a6ff8c69916b74d20f400e5816a3fbb6 ./Nomad/monrepo/packages/contracts-
bridge/contracts/interfaces/ITokenRegistry.sol

6601834c30605d07982020a1f0788824500f55278c528ead3721f97a429dffd5 ./Nomad/monrepo/packages/contracts-bridge/contracts/interfaces/IWeth.sol

Tests



f843d4ead29f176148bb677bb53adb998dd452c106163fc2818904fcf840b567 ./Nomad/zodiac/.eslintrc.js

de2529a8e1cf5b57ecaf2b2722e202306b99d332a96d9d619d3a0d380ef32bd1 ./Nomad/zodiac/.solcover.js

fda9bc2d1013fefc3e86517667da943b827d110b41fb55c08959772fe0b65c5a ./Nomad/zodiac/hardhat.config.ts

40215710992cca1fdc17f66e11e8b5db878781521395f778214720ad9d438a9a ./Nomad/zodiac/test/FactoryFriendly.spec.ts

af279237e61e95993a352f05b652cd7d70962a11cf6789294bfcfb53e1c43b7d ./Nomad/zodiac/test/GnomadModule.spec.ts

4240c433d6603544d1564a46a6a29b4bf07d149b1d3168d6cbc36f1b497561c6 ./Nomad/zodiac/test/utils.ts

fbcefebfe2e23706743b13d7d277ce40a2dc43883b28158469023a6ce00c2280 ./Nomad/zodiac/src/deploy/deploy_module.ts

ff6659aa31171f904bb37db7dbc20fb2289761ece81e30a6251758f1a9d26f03 ./Nomad/zodiac/src/deploy/verify.ts

20e407301c6bf1c41e6f706fee763c3ec58617338a4ca2df6f3cae22a37ea5a9 ./Nomad/zodiac/contracts/GnomadModule.sol

8f98be62dc7d0ac20685740d920a9c78753888b39c658de7eacaa202b61dd2f0 ./Nomad/zodiac/contracts/test/Imports.sol

3bf9aa81de72cd8e4522b5ed546bab4dd63f3a7b7502e62489d2f44f021e3aab ./Nomad/zodiac/contracts/test/Mock.sol

597af176ac262ad9e23eaf0d2306d275d50640ecc7aa8fe1c381524de04b1638 ./Nomad/zodiac/contracts/test/MockConnectionManager.sol

9040a0d30df69a7a266e2e1706039aa518b6ec124f697390b8a3edf50a2fdef4 ./Nomad/zodiac/contracts/test/TestAvatar.sol

203abf1a6bd49f0285ee9e3df54b22f7c51ccee3eb271a0297a7acb3e79a10df ./Nomad/zodiac/contracts/test/TestFactory.sol

2fb45566320ea8b2e5743c8f40d8b907e25777f12463a24687a99d9aa7d60a74 ./Nomad/monrepo/packages/sdk-govern/tests/index.test.ts

164e766c402f9f073900d39e89de8d24e5278bb4ebbd0cdc59c3d6f102633c6d ./Nomad/monrepo/packages/sdk-govern/src/governanceEvents.ts

2b5c133ab81fc88906b21e38c974d025e28e9fb416581dc558e3b9443e9fffb6 ./Nomad/monrepo/packages/sdk-govern/src/GovernanceMessage.ts

ee3a4c16f22e541286f267fe2cbb26b75c1450db6ce35a51fe26f2fbb9d645f1 ./Nomad/monrepo/packages/sdk-govern/src/index.ts

ce0427d12824ff043e31c6d8d7ed069e93ecc618014864b8f1e7040af6c3d57c ./Nomad/monrepo/packages/sdk-govern/src/utils.ts

68474b47469735a7664619376a2a073a1b7b41b6b1524992a9d619408021e4e5 ./Nomad/monrepo/packages/sdk-bridge/tests/index.test.ts

a9d54cec9411a51dc8162dd3a1b5204c10e8c5a626efce5eeb41dea03b5daa49 ./Nomad/monrepo/packages/sdk-bridge/src/BridgeContext.ts

dfd4e1f20cd871fcf9c048b288543f4b4a3f867331b927a1f01cd6b6cff8f4b4 ./Nomad/monrepo/packages/sdk-bridge/src/BridgeContracts.ts

7887b2e91070642e9381fb581d54782104de9fe6a65a2adf243937b28282cd63 ./Nomad/monrepo/packages/sdk-bridge/src/bridgeEvents.ts

47c798622b433f789f07d2470f230e984e645a0495ebc68183a99998e3bfd96b ./Nomad/monrepo/packages/sdk-bridge/src/BridgeMessage.ts

00adb4a238b66f5ddd1b797e4bd51bb59c612ae7f97896aeeecbf628ba8914ac ./Nomad/monrepo/packages/sdk-bridge/src/index.ts

ac02c2238f05533b4bf34937d2151bdd5e7fec1c9b329d8ec278e76e0c27345e ./Nomad/monrepo/packages/sdk-bridge/src/sendCoins.ts

e419bcf785e5a32304c3e943e608c552a92e5115c5b9e2313cfa8bffeece3908 ./Nomad/monrepo/packages/sdk-bridge/src/tokens/index.ts

7476f4f8d6e7e2b7437d21acc35212eb8aa0a0ac221f1fc55c41b17e0dbd931d ./Nomad/monrepo/packages/sdk-bridge/src/tokens/testnetWellKnown.ts

6696446d6ccb165c36c14f008c804a4d40fdbf1de9d13103d1a6d8fcc8a478ed ./Nomad/monrepo/packages/sdk-bridge/src/tokens/wellKnown.ts

b2ad274f4379fd6c2cd7497796d3901451117b2cb0d285d8b4cffdd9aa4be20a ./Nomad/monrepo/packages/sdk/tests/index.test.ts

ea5d8cab505ce022deb1c2dceed419c097dee81483d1937b4fbd2ce55a226b51 ./Nomad/monrepo/packages/sdk/src/CoreContracts.ts

f6f91bf59044c7a50a9fb4127c70612aaee79da06d01035d17f7e59059c7b6fb ./Nomad/monrepo/packages/sdk/src/error.ts

d96f01448847f99fa0a5e8a41093467d29a2863e8d0bd4f9b0636d431d0e4b86 ./Nomad/monrepo/packages/sdk/src/index.ts

9366793a45d2e978b0428947b1d2b751d23d53811aaba49b9b027081c6be4e1a ./Nomad/monrepo/packages/sdk/src/NomadContext.ts

acc7b067fb52b02bf6f120bc946ad6fbbaae25248434ddba9ad4f3268ecd0e50 ./Nomad/monrepo/packages/sdk/src/messages/index.ts

188678b7f55b06bbad12fbd9678ab2e8fd65b8518c2cdd853ead2d5dc8627ebd ./Nomad/monrepo/packages/sdk/src/messages/NomadMessage.ts

d9e495053858c4d335ac2872e49155f7c625ecf8a1211e9fbb0e42265f8d8c1c ./Nomad/monrepo/packages/sdk/src/events/fetch.ts

cdacce67bfb8b491de65fa9d5aa6d1ec3df0bd3a9e91df4b1624ee9783ac9d2b ./Nomad/monrepo/packages/sdk/src/events/index.ts

7e2d58c6016186fc3041456e77b916d10c1418db4521f9c7de745772671fe49c ./Nomad/monrepo/packages/sdk/src/events/nomadEvents.ts

d671d2aa72efd946593fba0397fccb8ff1eac98ac71a662a55b80f6ae64d5813 ./Nomad/monrepo/packages/multi-provider/tests/index.test.ts

353e4ad7d83f4a761fbab285ccc648020f8dd889bafff1c3d9e37e7d2dfbe930 ./Nomad/monrepo/packages/multi-provider/src/contracts.ts

5cdabb78281276666deb197ba2c892ad4bfd583594d831d375bd574240f1aa4b ./Nomad/monrepo/packages/multi-provider/src/domains.ts

04967c2ecc51f8911f6f46d16eff95361b45889b1499b657ee6d44df53724b10 ./Nomad/monrepo/packages/multi-provider/src/index.ts

8859d731870b0458a0bb80cb8497b0ecc4cba88023ad8e6bd38ff1df0ca7ee2b ./Nomad/monrepo/packages/multi-provider/src/provider.ts

b8452690bd44c5b217fa435bb93d101c211582b01300e6c64b4249d58c1e1a20 ./Nomad/monrepo/packages/multi-provider/src/utils.ts

cba229b2bc255137666c10cf76ce61af10d2cd5bf8480e9dbd2ae54ec1d9a067 ./Nomad/monrepo/packages/monitor/src/config.ts

f4190e3592a582e45a4f43b0646e2a1a73db8ab815d504240140117a9227c577 ./Nomad/monrepo/packages/monitor/src/gas.ts

6136be03dbae7aaec670bb9945f1e92fe23fa899a267e92d253aa7a8ef1d5f76 ./Nomad/monrepo/packages/monitor/src/googleSheets.ts

b707739d48342b764e748120a09feaf1110c59ae198f9b97666246c5e783b1e2 ./Nomad/monrepo/packages/monitor/src/metrics.ts

8f9c1418327c45d7fed3fcbe076200070be6ec54019b51c76b5cf56dabb5a1e0 ./Nomad/monrepo/packages/monitor/src/monitorSingle.ts

75aa8e6687b46b808a64c3241d9b9e084078167ac118cae5f611298dba94880e ./Nomad/monrepo/packages/monitor/src/print.ts

9ab796d8f6bf82a8894ebcb91a36d9f470f5d2cfd2dfc8865af6d1d7984c54e7 ./Nomad/monrepo/packages/monitor/src/registerContext.ts

817c104e4d29cf645280cb2983ee87b5d267036a4025f879ba3293250b3cf5ac ./Nomad/monrepo/packages/monitor/src/run.ts

11aa065a2ac8727f6059318d70d04f5e8eac4b4dfd5d41ff91552498bbc578e0 ./Nomad/monrepo/packages/monitor/src/setDetails.ts

30b26e8c452e4d02efad0256c8595350897a686a71861603705d8f547f4e66de ./Nomad/monrepo/packages/monitor/src/tokens.ts

0f32ca683e2f18120301d38569acc91ec37ff83eac23b746f8452392810b90d4 ./Nomad/monrepo/packages/monitor/src/trace.ts

31ca07e041fe5ef9bdef3118428508d3eddbb3398aefd84328d7b64642a7e73d ./Nomad/monrepo/packages/monitor/src/utils.ts

286a61390a5a804db89aa643d3cc8c7eb7665f4edb4ad8493318f1342360a374 ./Nomad/monrepo/packages/monitor/src/latencies/metrics.ts

45d0ee536f2f0ebcf03792afa543caa5fcd3fd3baaaef78a3bbb967692cd7349 ./Nomad/monrepo/packages/monitor/src/latencies/relayer/metrics.ts

de0d0d06bee65a7a4f8d3fc9a81cd2beb3dcd5c9c7485115f3955b7b18e7e406 ./Nomad/monrepo/packages/monitor/src/latencies/relayer/relayerMonitor.ts

0004a62efedbccd8bc831a8908537567b914d23434253ef547a1ace67aeedb57 ./Nomad/monrepo/packages/monitor/src/latencies/processor/metrics.ts



cfea02370f0fcdcbf3363da64b320032a4b30f2cf0d8b9f1c43b6f46854bb371 ./Nomad/monrepo/packages/monitor/src/latencies/processor/processorMonitor.ts

5fddd378b5b1c0e39dbf211555a10554cbd1e02cb1a4636d3f43826c07f1e822 ./Nomad/monrepo/packages/monitor/src/latencies/e2e/e2eMonitor.ts

ee46ee1437b8437c972fb2551209bfea9f1513528a478206e6b01862a94d601d ./Nomad/monrepo/packages/monitor/src/latencies/e2e/metrics.ts

5fa94435bbd2f7a37ae3f39e4c13ace752e6d1d25ff9cacf638aa47a9a9aaabe ./Nomad/monrepo/packages/monitor/src/bridgeHealth/healthMetrics.ts

84629728c9c4ed56161e76c203c0c77f3ee0357e5c4a4cfac8bfdb0050d4b94f ./Nomad/monrepo/packages/monitor/src/bridgeHealth/healthMonitor.ts

0a00a8da91dcd694e9f9f4d63b3327e75206441e581dbbfe96995b6699e08bbe ./Nomad/monrepo/packages/monitor/src/bridgeHealth/monitor.ts

58a12acc25827fb1b77e9717e4536c1554e4370a6ff7c81c83a751daad205516 ./Nomad/monrepo/packages/local-environment/tests/addChainCase.ts

3d305489b5c9d3b6eec418bd47c45b0ae6d85f5115a1219f138e7067bb5cdd6b ./Nomad/monrepo/packages/local-environment/tests/agentsDieOnImproperUpdate.ts

ed4a6ea2206e4db342cddd6ff2531225a2359cbf0159276b30fddf8fdf293a73 ./Nomad/monrepo/packages/local-environment/tests/common.ts

fee20b56627a4258e0c85c23f79282bda5c806925e6d8d019ef108a81bdd1cac ./Nomad/monrepo/packages/local-environment/tests/process.ts

9fa522ddb5a1596acf353b89007d199da93baac487a4a69e79e046c54acd0eea ./Nomad/monrepo/packages/local-environment/tests/sdkFailedHome.ts

e554b08520a21fb23c80c3de71f21e722a47b68515cc2de97b40dfb2759d2984 ./Nomad/monrepo/packages/local-environment/tests/sendTokensCase.ts

ceb917324b75a3512bd97c89c2ce12c3c437166caad6b063e54ad3755e6fdac0 ./Nomad/monrepo/packages/local-environment/tests/start.ts

7c29e2ade17c7d0c960cbde198a6e48add04315b2243c726cf1eed8ca34306df ./Nomad/monrepo/packages/local-environment/tests/startStopPersistanceCase.ts

ab9d6c95f45659011e35ba1812b6e9a3eb62856e55d6282a83e5f179c2b055d3 ./Nomad/monrepo/packages/local-environment/tests/stop.ts

0d9add37c151aec58fa74cc16ec68236355ba35119c3311aa906152f2a94eb3b ./Nomad/monrepo/packages/local-environment/tests/watcherDoubleUpdate.ts

6bf0829e5403caca767fc30758b018056938ef638bf9f1c7f890dc0f54813490 ./Nomad/monrepo/packages/local-environment/tests/watcherImproperUpdate.ts

f1287caa4231823c32507842ba1040ad849c1eda8fdb2ebe3b4896b759463e62 ./Nomad/monrepo/packages/local-environment/tests/utils/token/deployERC20.ts

eb0167b1c14cef3031e76e798268da52fd19d43c30331f502f95bc5d5ad252f3 ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/Context.sol

60c3bb830c82a94e21fc9e4ece1400282ba46d1244afd251404735cbb6e72825 ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/ERC20.sol

6a7b7a3f5b0f0011b42bb3ae925ada6b06a24633c63b38d8bce6234a7313f034 ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/IERC20.sol

8e51e13ae9e0df1dd2336d8f7a20620bc3551e1f5719af4eabe48938684c127a ./Nomad/monrepo/packages/local-
environment/tests/utils/token/contract/Token.sol

f7e87d55d7c593a9837685496939d6690e228f54ba79158d5f2024e46a0545f3 ./Nomad/monrepo/packages/local-environment/src/actors.ts

f8bddd5fe59f0a2d7cdc355bdd8cee7e906d2a7224ddfde5f34e43fd8a5efac6 ./Nomad/monrepo/packages/local-environment/src/agent.ts

9ae920edaab621727e0121453095dc15e4850da5b0a72df82fce8f30afe91832 ./Nomad/monrepo/packages/local-environment/src/index.ts

dc088a194fc09bf0b4105268fbc18c6dfcc0e0e6342e130baa739af57ed3892a ./Nomad/monrepo/packages/local-environment/src/key.ts

7f22f816304033da3ceb8d7a47ab4743183458fc2990a985aafc91dfe6923bcc ./Nomad/monrepo/packages/local-environment/src/logger.ts

f60bae1ce22b505e61a105c03c6ac776c9387046bd00435c529a035f7806eaf6 ./Nomad/monrepo/packages/local-environment/src/network.ts

6b729140745855333ab7ce3972144f7d3bf3dc8e7363c048cc55a20d9dd7ea1b ./Nomad/monrepo/packages/local-environment/src/nomad.ts

dd460b0fcbbfe1be6d9592f174dcb58e8057a032a00aad2c099622fb3f3b6a6e ./Nomad/monrepo/packages/local-environment/src/types.ts

125929a21dc455e6a2da9fff8c4c13ceeca3862afd4e52130ed9130521389a2a ./Nomad/monrepo/packages/local-environment/src/updater.ts

f73bce57d59f70021e430352fd6bd037673db0786b45c21a0a2eaaee4eb0871c ./Nomad/monrepo/packages/local-environment/src/utils.ts

41a82e8c191977647a168099de1248929d8e99e3f766594bbf30ef9bc941444b ./Nomad/monrepo/packages/local-environment/hardhat/hardhat.config.js

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 ./Nomad/monrepo/packages/keymaster/__init__.py

d0b215b38548c6fe92fda8dccfdd91c4dc72fb6b8c6f6103a1f1f4d276f3045b ./Nomad/monrepo/packages/keymaster/src/config.py

e4b1fb57cd2a115f52e57952c596580f23a89da58537c233bacfb5901f7e9098 ./Nomad/monrepo/packages/keymaster/src/keymaster.py

6359cedcb1383ac2c9df0374c5b76713ccf01fcd450dec9caf6ff74dda9a14ae ./Nomad/monrepo/packages/keymaster/src/utils.py

e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 ./Nomad/monrepo/packages/keymaster/src/__init__.py

21e097e8c2837b5653bf81f5bf42c6d284e17c5b8685604df1a41c574fc2bc12 ./Nomad/monrepo/packages/indexer/main.ts

5e4aee63cff36bc604430a50fd9089b4bae5f7ae20f3be0640621fdf99ce560a ./Nomad/monrepo/packages/indexer/tools/kek.ts

91f02471a521428f0f5e7088c4f71ca0755a4e32340372f8f9e238abb5737400 ./Nomad/monrepo/packages/indexer/tools/lol_logs.ts

fc6aed73bd80291c56213adcc03676235fcab120a2d6f9222ae5fbacc74315ab ./Nomad/monrepo/packages/indexer/tools/split_logs.ts

85ccb6f1c28519834924b4b9d1ca48e1a0d366ab2ce7417dd52112eac043524f ./Nomad/monrepo/packages/indexer/core/api.ts

efec906537730ef987bce9c28f27e47da7c757d3daa1ac0221acb233117d1ec9 ./Nomad/monrepo/packages/indexer/core/consumer.ts

3f8bcb8f29a18b9cc0647cad2c96f090db353d2f76c2f512a856d52d121a05fe ./Nomad/monrepo/packages/indexer/core/db.ts

9af0b71e628c58ca8585d07294703c89b0a27faef301c102d18fcbc5baf95dd2 ./Nomad/monrepo/packages/indexer/core/event.ts

bda0114a991d7cd9262cfd2d03da1562997f37791ea6498d205840d36348f0db ./Nomad/monrepo/packages/indexer/core/index.ts

0257db4737e5209bf95c7f1fd708c0eb58d17f4f1003f6df1f8526532fe2d702 ./Nomad/monrepo/packages/indexer/core/indexer.ts

c6288a09095ced16803a00aed43dded4c512fd08ef41e62fab6994e6d76f83ee ./Nomad/monrepo/packages/indexer/core/metrics.ts

468fee0e637bb251e1f9bd6c4890cdc5becaf47f641d244a46ae8bf1e7344afd ./Nomad/monrepo/packages/indexer/core/orchestrator.ts

abbfb12547c2082c2c15ede5f7f1b72ffb97f92abecaf15341dc1d038b342435 ./Nomad/monrepo/packages/indexer/core/types.ts

ad77b85d8ebc18570582fa4926ccad27055445f76bc4c69aaa3605a3f56f291c ./Nomad/monrepo/packages/indexer/core/utils.ts

956eca308a3d91cb5ef77ad0fc968b92aaf73934be50f671bb79f307dc434229 ./Nomad/monrepo/packages/indexer/api/index.ts

de2c17b01608a759cb09474dec14727b81a29e6489749d95523202f09fef8db0 ./Nomad/monrepo/packages/deploy/src/chain.ts

51791620a3884698c0d93d841a33d452ce7ff5dcdf9039b106daba57cfb530c3 ./Nomad/monrepo/packages/deploy/src/contracts.ts

76c08759f1c68a3604ad96de34db81753805e87f5ce12e0ee565331feec7410c ./Nomad/monrepo/packages/deploy/src/deploy.ts

9f15c19fb2931f160d5b000c11939f4422bb4d2a95bbe2f02c09397b15bad731 ./Nomad/monrepo/packages/deploy/src/index.ts

f3c151e8de531fa353c3e86dbbb71f1338159ea9fa77fd7ac76cfd1241d12d8b ./Nomad/monrepo/packages/deploy/src/proxyUtils.ts

87c685ccb18a3f897d7e4b2f22a8faefb94de7d4b9e420f07eb1ecb403133d98 ./Nomad/monrepo/packages/deploy/src/utils.ts



55eb4222d357afd770942f850ad36193be915d079e982947d104fc2686359f32 ./Nomad/monrepo/packages/deploy/src/verification/readDeployOutput.ts

9b4a44d88f5b02bfeced80eebac6f9b5e915173de1e6bd229b1c562709704640 ./Nomad/monrepo/packages/deploy/src/verification/verifyDeploy.ts

e31c9e744359af969f734cfbaae8329ea994e3fcb7981a4c9a7ed2baf23206aa ./Nomad/monrepo/packages/deploy/src/verification/verifyProxy.ts

3ba5f5975844e276fa47ab97fef973ec24bd1fbf095d4972d56c278232351b2e ./Nomad/monrepo/packages/deploy/src/incremental/checks.ts

017db3ac596d480ecdc229baecb13b21bd2763bc3f7e04a3226bd4d76295c39d ./Nomad/monrepo/packages/deploy/src/incremental/index.ts

e0e0ee512dec3b533c9f20a6c322586288e28380625e78b73fcdf9be626ab2f1 ./Nomad/monrepo/packages/deploy/src/incremental/utils.ts

83cc299369f2146a67a55bb0705dfc77f76ad97dd3bd9bbaf6cee93240526b74 ./Nomad/monrepo/packages/deploy/src/core/checks.ts

9e97868cdd02b1b8f5c2487bc9ffed00699a3777adf43a97942995ee4b279234 ./Nomad/monrepo/packages/deploy/src/core/CoreContracts.ts

1c80d2f5fce45dca3bb3e6436f62191c6ea7850160366978c773785bc3881cb5 ./Nomad/monrepo/packages/deploy/src/core/CoreDeploy.ts

eb3d840e88b3e621fdc7bc717c112ae80e368e7558da6a1df94b64ad28eed740 ./Nomad/monrepo/packages/deploy/src/core/index.ts

7ae32ae48b0ccda2e146a6eebd5e613419a0dafc52db021114339c32c44725d2 ./Nomad/monrepo/packages/deploy/src/bridge/BridgeContracts.ts

a0318b34b2cee9c920317197bf064ecb09c40e144ecea4408edc6ec581e4945c ./Nomad/monrepo/packages/deploy/src/bridge/BridgeDeploy.ts

588ed3a6cddf7dcf0125a68d0f97dce9be07d843d4d4ffc0337677b16758b38f ./Nomad/monrepo/packages/deploy/src/bridge/checks.ts

290f444ec84324f8de7e89ca6ed197f9cf1035dd77b63f0188f0a0cdcc4ed7e5 ./Nomad/monrepo/packages/deploy/src/bridge/index.ts

8fcd05796972a6ff8b2bdacf1ed35d0df9ab4fb93a1f8c9df4df64f2f3842b98 ./Nomad/monrepo/packages/deploy/scripts/calculateDomain.ts

ea76c39fae46bdd5283209e4f8715e3a53e5b36639d097fc1253ccd605d4c3af ./Nomad/monrepo/packages/deploy/scripts/staging/bridge.ts

18757af12315b2a425cd8885f4e2016d0484f0e6c8f81e40237a00d83ab6f208 ./Nomad/monrepo/packages/deploy/scripts/staging/core.ts

cdf634eb7d270f89e56c14ca867453089da3669c208ffaddf3d052493830fa3a ./Nomad/monrepo/packages/deploy/scripts/staging/governance/checkNewChain.ts

dd41c44e4f9c48f7836e17b08a00fe0aaa5454270dd45bc94fa8745818c9a7f4 ./Nomad/monrepo/packages/deploy/scripts/staging/governance/deployNewBridge.ts

91ef60674514ea792b196d20c642c62ea32bda3b037fce6d8721e0bd89d250fb ./Nomad/monrepo/packages/deploy/scripts/staging/governance/deployNewCore.ts

7dfefeb82fc76ef37c971915155d2db076252f223490967b75c48e08b37eb3a7 ./Nomad/monrepo/packages/deploy/scripts/staging/governance/enrollNewChain.ts

a0d4bbb0e2ad5aa419a048d3ffdc5d08b5b1de1f1bc4c066d50a69929ed698d7 ./Nomad/monrepo/packages/deploy/scripts/mainnet/bridge.ts

7776da155405407bbd6029da329df1a5ef37d2e051bb1f2e68e610ab29b9511a ./Nomad/monrepo/packages/deploy/scripts/mainnet/core.ts

421b7e80e39b67dc2f15bb281384ad90280b398e095fa4921cf4cf799a9b6b65 ./Nomad/monrepo/packages/deploy/scripts/local/addBridge.ts

c06d307db38682a898480a70407b88b97a01638b56c80155e599c9a43ce37872 ./Nomad/monrepo/packages/deploy/scripts/local/addCore.ts

71a0691f6427f4f604301910af5516d3583c7c3b3e82d994e807a16ff2cefcbf ./Nomad/monrepo/packages/deploy/scripts/local/bridge.ts

3b5d1cf8a175ce41aed5f8b89e56e7e6d6121907038d78d5549733bb8789929e ./Nomad/monrepo/packages/deploy/scripts/local/connect.ts

26d08cf9a93a6bee659ab2db7500ea438ad4c4e521d0371bbc9931318ea446a6 ./Nomad/monrepo/packages/deploy/scripts/local/core.ts

1db51f5e76654c79b48fb8a9e2ed069b0cfea0b138c8e783e66fd47899a33b71 ./Nomad/monrepo/packages/deploy/scripts/development/bridge.ts

91bb0bfd176e1a72f31220d9ecf0bc1a7d8b01d0a7ee1933ef3ffdaa2a558601 ./Nomad/monrepo/packages/deploy/scripts/development/core.ts

07bf32de7964b398a1b72445fe7d46be18d1076e9eb975ecc5e4e6f67a842d51
./Nomad/monrepo/packages/deploy/scripts/development/governance/checkNewChain.ts

b6e9c2ec8a1964928b2c11b5274803ac9b0b3d07a6fe1d6961e83c54176c5ee0
./Nomad/monrepo/packages/deploy/scripts/development/governance/deployNewBridge.ts

5465d6b32c1f6ed0f544807a1241dde05b62ce92c57fbd827b8a8e5e3d10a11d
./Nomad/monrepo/packages/deploy/scripts/development/governance/deployNewCore.ts

2ad1ce919c7f984924612f962266eb751d49169e28f555d38b17efdf035c6cf2
./Nomad/monrepo/packages/deploy/scripts/development/governance/enrollNewChain.ts

2e6a2a208c2cc279e70bb2b283f7c930dca23dd0e75de87b2e645c8909e8f456 ./Nomad/monrepo/packages/deploy/config/testnets/kovan.ts

2591abfd8c453663952a41740c7d01f27d5b3e8919c97f2104c2d716047fc83a ./Nomad/monrepo/packages/deploy/config/testnets/milkomedaTestnet.ts

8995fc4a24ac095b39071637054c6b39d9dfd1d9c8699ca30fef8c2c398eabcb ./Nomad/monrepo/packages/deploy/config/testnets/moonbasealpha.ts

7485e8cb0daf2b285351bd08137bb590da5c5deaaf1479c0ac6486bb1c4cd125 ./Nomad/monrepo/packages/deploy/config/testnets/rinkeby.ts

4470c89496416da5cced13878cf62709ca195ebc0592c34e993568d679c7ae00 ./Nomad/monrepo/packages/deploy/config/mainnets/astar.ts

03bf5f52df90584decc9a0d1237c148ad1ad9d17fc35c8ced7dd6279ea7d755e ./Nomad/monrepo/packages/deploy/config/mainnets/ethereum.ts

48104c0dad6191c2aab62dfb10e9ada10e5e8259eeb4d375b983a2d94b575e65 ./Nomad/monrepo/packages/deploy/config/mainnets/moonbeam.ts

9260d314dd584c910bfc480dad5e4e4e05f1dd1f831c7999f55eda3a81c90e70 ./Nomad/monrepo/packages/deploy/config/local/daffy.ts

5ac11dc1333273724df61cdc5d836be260f0bbc5e3971038830fca910981f434 ./Nomad/monrepo/packages/deploy/config/local/jerry.ts

f69baf8aa2147dd8271d29b776b76158da9ba3cc41e10ae933fd383474e4c245 ./Nomad/monrepo/packages/deploy/config/local/tom.ts

7e67c8663d9d8ab563181f3a93b2e9f7f6e04d5fbb4a0c91f46e3131b2114832 ./Nomad/monrepo/packages/contracts-router/.solcover.js

ba60b1ae55c84d0acef6b5e99330f0c8630acca4546ad93bb12c3f4fe2c6e3ae ./Nomad/monrepo/packages/contracts-router/hardhat.config.ts

652b3852ad8e63efd4f91567fd4a004a4e939766e0ecd5bc3951fd58aa3442de ./Nomad/monrepo/packages/contracts-router/index.ts

dcbde8a7a9fe5b98888fee130a7f3d7e163b92ad0928f10580aef6b147b01954 ./Nomad/monrepo/packages/contracts-router/dist/index.d.ts

e49c87326bc40b0b1c0df9e72a7edf7c42b23c1b133218a926c82ddd03904368 ./Nomad/monrepo/packages/contracts-router/dist/index.js

b6b3e1a64bb480a8315a55946678c8e290412f5e3ed817f8bae9e819d86f8960 ./Nomad/monrepo/packages/contracts-router/contracts/Router.sol

018f5299b11762b2d2bdb3274fe11f6ec9dbfa8295f65fce5e7d97b9350f8f18 ./Nomad/monrepo/packages/contracts-router/contracts/XAppConnectionClient.sol

7e67c8663d9d8ab563181f3a93b2e9f7f6e04d5fbb4a0c91f46e3131b2114832 ./Nomad/monrepo/packages/contracts-core/.solcover.js

ce15333780839d48856bde1178279418164502b8186c8f280827c458bf71cf3a ./Nomad/monrepo/packages/contracts-core/hardhat.config.ts

f9bf3bb9e8b2160082395589a791c990e1bd8e3e49d3aa416a4886c0960394fc ./Nomad/monrepo/packages/contracts-core/index.ts

65b89b66f7bca650351992b273ad5c23f23d075f45907f53943461f2be68f6a9 ./Nomad/monrepo/packages/contracts-core/dist/index.d.ts

6c49c717cb1cb02315a51a4f2a190f6d366c8c78f956b02cc733c488e352190a ./Nomad/monrepo/packages/contracts-core/dist/index.js

d00a117e25bc8ba1071845d331028a3c58cb5dd5d1e42a2f8571c425aef2196d ./Nomad/monrepo/packages/contracts-core/contracts/Home.sol

d0f40e08a0ed29e6fb3e208a412a17f2c07db17a558dac7091c61686088ed5c3 ./Nomad/monrepo/packages/contracts-core/contracts/Merkle.sol

de15ff842258e7e22af1bfd2183a86f3d183bd6f416040c290e7c2f4966718a9 ./Nomad/monrepo/packages/contracts-core/contracts/NomadBase.sol



7fb0fd531a9f2283ef1cbd3c24e2d0fa3feb8b1ddc928e19f53e4544fe031a41 ./Nomad/monrepo/packages/contracts-core/contracts/Queue.sol

4b9de559b63b90a12907be0931e8769ee406642312574e52d3349a71355e1831 ./Nomad/monrepo/packages/contracts-core/contracts/Replica.sol

d1ad5ebafc193db8f0723b9e38b0c9c35a89c3739cab44c6fa88fd2247b0477f ./Nomad/monrepo/packages/contracts-core/contracts/UpdaterManager.sol

e2b284e9446b30386024b9aa0e1500488a3fc7d0e8aa747a45aa4fe6590263a3 ./Nomad/monrepo/packages/contracts-core/contracts/Version0.sol

f6ef802dd25c3abed7fe87c00c7692e286cba4b608ad2eadb4dd65733ee81bb1 ./Nomad/monrepo/packages/contracts-core/contracts/XAppConnectionManager.sol

1c0e101260c2549940880292443e755989cf8c61b871bc66b6626b247503965d ./Nomad/monrepo/packages/contracts-core/contracts/upgrade/UpgradeBeacon.sol

832ffa316e24d689c19d7023748a267712d84d3cf6a7e3f90289be808cebad15 ./Nomad/monrepo/packages/contracts-
core/contracts/upgrade/UpgradeBeaconController.sol

6bf68a5b556dac76487fb922a5c5ba1a373e67f57368dce683e8ce07619d79d8 ./Nomad/monrepo/packages/contracts-
core/contracts/upgrade/UpgradeBeaconProxy.sol

1d8f79d86f912ed20c44266a7296efb01ebe466af521d2bbd4b3beb990567dd3 ./Nomad/monrepo/packages/contracts-core/contracts/test/MysteryMath.sol

4ea99fa2bf1e686dd296d71e5c358c7b306ec926b9fcfcf2b50214058a242adf ./Nomad/monrepo/packages/contracts-core/contracts/test/MysteryMathV1.sol

47adc30c71b54462030de2e089c102ac27fb0de682f4921bd8f6559499abff38 ./Nomad/monrepo/packages/contracts-core/contracts/test/MysteryMathV2.sol

7f6beb01d945d5d32901f21ad8f52ba8dbe932e10d68e6580a2e3e7eac8e4503 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestCommon.sol

f30ca27e325e08cfec07a382dc2cb41512c4d1832906c4d390ae59e5911e969f ./Nomad/monrepo/packages/contracts-
core/contracts/test/TestGovernanceMessage.sol

2a93462dde81dc77165785e9c7a780e14ba44d93ebbcb0ae9ec545eb507ddb6e ./Nomad/monrepo/packages/contracts-
core/contracts/test/TestGovernanceRouter.sol

f2ee9ecb9a7717f6c59283b076fe779450092118015915e4edc6e7935b7095f3 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestHome.sol

668a6c81374b08925970d8ed2c09b15f044c56c51b45e33a7a2d98f5c93605f0 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestMerkle.sol

0cea4931ae64899e37f4282343555240ebd51a77c24dd6942903d75413219276 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestMessage.sol

8192727c23fb18126efbe62c3901164ac468ff8d98b3cabdfedb74ec7345540e ./Nomad/monrepo/packages/contracts-core/contracts/test/TestQueue.sol

63f5b9ef69d92b9b8fd50d08040ea95cc6fcaee3dc1f21a38b4fdfbc80404b33 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestRecipient.sol

87c75a1dfd272782de15bd380bc650c6fc05aef8f5621f770eee2ede492a7bb0 ./Nomad/monrepo/packages/contracts-core/contracts/test/TestReplica.sol

7fe0ca4b7ac0666f1625ef65159a338f2943cabe7b6668e7f4844d30081eee04 ./Nomad/monrepo/packages/contracts-
core/contracts/test/TestXAppConnectionManager.sol

32dcd82fa0e32e3745eca4f9e39458eee1fb0683d22d3dc6b6b99638a3aabcb2 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient1.sol

df57b1d5fc8f518c0d13ad72894445b8bf4efc45c13c540289aed9055d911a99 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient2.sol

a252945415af04654838bdc3959c979219965eb31ab88016cf7c624a5e4b0e4c ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient3.sol

3ba8e0c4f42fa62321b94b58756488851b5c365ed4722ca306d4bc265b1385c4 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient4.sol

e9d43d25bc487b1b8a5335adeec84197bcf16d0910be6f30740333bd258a98f4 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient5.sol

2ebbec7b7fc89f2d49dc473cbedf6a7f1f54abd359fc3f78317062497b17e636 ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipient6.sol

63b9010a994b096ea2d787b38921b0f995543b15f19f07a6c33e5c1a90eafeaf ./Nomad/monrepo/packages/contracts-core/contracts/test/bad-
recipient/BadRecipientHandle.sol

ba936cbe96f54b719623b6c95a2f069356fe14e8061196d9f02884ddf1deffc8 ./Nomad/monrepo/packages/contracts-core/contracts/libs/Merkle.sol

e2262f0517d1d69c5d200b3ac6998134ca24ff4737b89e05149955459f650c67 ./Nomad/monrepo/packages/contracts-core/contracts/libs/Message.sol

25bf0b13e085ab095235ff25bf842b5b2b03d0992afc4aec2cec8d3ae2403b60 ./Nomad/monrepo/packages/contracts-core/contracts/libs/Queue.sol

b82274ebdf155c9cd1750a64b864a54c17c79cf59188b7c58e33f3fe2c09e21c ./Nomad/monrepo/packages/contracts-core/contracts/libs/TypeCasts.sol

40479a0d3596ddcd00fa2ff6e24cee120617e784bca4ec4413e461e383ae89e4 ./Nomad/monrepo/packages/contracts-
core/contracts/interfaces/IMessageRecipient.sol

7958f62ba4adb2d6367d94a8736585189e7b70b7ff5794fc22770a267c35b9a1 ./Nomad/monrepo/packages/contracts-
core/contracts/interfaces/IUpdaterManager.sol

a165f6a668b15714bccb4b495372ddf87d68cc5d21f8481cb27475cfddca4620 ./Nomad/monrepo/packages/contracts-
core/contracts/governance/GovernanceMessage.sol

7d80a2fd57a7dd4bf28b858b8552c355a32629dcb8a156ddcee8b7f2b4bec2c8 ./Nomad/monrepo/packages/contracts-
core/contracts/governance/GovernanceRouter.sol

f9567ce10c06ba7449f98e65c78f0a6f9ae72ee993c88a1875fa6a92a7ceeaa4 ./Nomad/monrepo/packages/contracts-bridge/hardhat.config.ts

505a1adc05c826c60f424bcf08690f87ce4c39472e31fe2c98a0425b878aec77 ./Nomad/monrepo/packages/contracts-bridge/index.ts

de77141ff9209d1689da46043d920e9a3ad008b5a3924355244aaff814e2dabd ./Nomad/monrepo/packages/contracts-bridge/dist/index.d.ts

78fc038def97c4ca7114ce97cd4608263c0e293c8029fe93f2fefb8bb22175d9 ./Nomad/monrepo/packages/contracts-bridge/dist/index.js

a06c0a999cf1d52ef4afe30a315241c33c3d711c164897e1c94fd78e86d7502c ./Nomad/monrepo/packages/contracts-bridge/contracts/BridgeMessage.sol

70bfd5e9872f2d5c69e97d9bc00c487460a1643000888aeef8ae5ecd5a49ee59 ./Nomad/monrepo/packages/contracts-bridge/contracts/BridgeRouter.sol

471e85f1fb02b5fb766bee82ff222cffd6d1c520e4bf477b07a653633a43122a ./Nomad/monrepo/packages/contracts-bridge/contracts/BridgeToken.sol

8e5faf5a8fb075aec05853c8c40e1cc258de4adeb4b85f9edd646a6bed1c5c45 ./Nomad/monrepo/packages/contracts-bridge/contracts/Encoding.sol

fd1783d494ee70cff5b0015e6b743792b35d92d4516e23199a07f4a7545a3cbd ./Nomad/monrepo/packages/contracts-bridge/contracts/ETHHelper.sol

a730af6c84a6774f449fd2516b0be0c40cb5efd43f33d803c8c5530bc54d82a1 ./Nomad/monrepo/packages/contracts-bridge/contracts/TokenRegistry.sol

c9f0d8deffff61d9f6268b0d198f9aa64c687d1659dc38b134c46c9ee5e43a93 ./Nomad/monrepo/packages/contracts-bridge/contracts/vendored/OZERC20.sol

cba19a6b53ed08db707391b2998e8cdcb7141357738d37a677e51bf07e9eba4d ./Nomad/monrepo/packages/contracts-bridge/contracts/test/MockCore.sol

eae58a9770879c46b0fac491d837e2def75f6646faa98e93639b2d7a9ab65dec ./Nomad/monrepo/packages/contracts-bridge/contracts/test/MockWeth.sol

dcf6ab9f802fa128422be1a18798478ae81f2f552a17888d49a596f2a3aeb1e9 ./Nomad/monrepo/packages/contracts-
bridge/contracts/test/TestBridgeMessage.sol

abb23624cc9441d042cd697d263a1cd96ef5109a9ea05deb2e8366c5bb8448e7 ./Nomad/monrepo/packages/contracts-bridge/contracts/test/TestBridgeRouter.sol

ea8d6853a57b3b86065bdf7a59dd271922d9c25e296c5cac00e7b75ef0414e0b ./Nomad/monrepo/packages/contracts-bridge/contracts/test/TestEncoding.sol

e70586fb593fd2da4827c1e4d0171c213d83af2f87761fdf53dbc51333860e80 ./Nomad/monrepo/packages/contracts-



bridge/contracts/interfaces/IBridgeToken.sol

28ff236d43f9be5f244554759ce1f710a6ff8c69916b74d20f400e5816a3fbb6 ./Nomad/monrepo/packages/contracts-
bridge/contracts/interfaces/ITokenRegistry.sol

6601834c30605d07982020a1f0788824500f55278c528ead3721f97a429dffd5 ./Nomad/monrepo/packages/contracts-bridge/contracts/interfaces/IWeth.sol

Changelog

2022-05-11 - Initial report•

2022-06-06 - Re-Audit report•



About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Nomad Audit


